top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Advances in Weather Radar : Precipitation Sensing Platforms, Volume 1
Advances in Weather Radar : Precipitation Sensing Platforms, Volume 1
Autore Bringi V. N
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2024
Descrizione fisica 1 online resource (684 pages)
Altri autori (Persone) MishraKumar Vijay
ThuraiMerhala
Collana Radar, Sonar and Navigation Series
Soggetto topico Radar meteorology
Precipitation (Meteorology)
ISBN 1-83724-458-8
1-5231-6298-8
1-83953-623-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- About the editors -- Preface -- Acknowledgments -- List of editors -- List of contributors -- List of reviewers -- Introduction to volume 1 -- 1. The decade of renaissance in weather radar research | Kumar Vijay Mishra, Merhala Thurai and V.N. Bringi -- 2. Doppler polarimetric radars for weather observations from 1995 to 2022: a historical perspective | Alexander V. Ryzhkov, Merhala Thurai and Dusan S. Zrnic -- 3. Developments in solid-state weather radar | Stephen J. Frasier and Luca Facheris -- 4. Quality of polarimetric data in the WSR-88D system | Valery M. Melnikov and Dusan S. Zrnic -- 5. Improvement of GPM dual-frequency precipitation radar algorithms for Version 07 | Shinta Seto -- 6. The NASA Polarimetric (NPOL) weather radar facility and some applications | David B. Wolff, David A. Marks, Charanjit S. Pabla, Jason L. Pippitt, Ali Tokay, Jianxin Wang and Michael Watson -- 7. NASA high altitude airborne weather radars | Gerald M. Heymsfield, Lihua Li, Matthew L. Walker McLinden, Liang Liao, Charles N. Helms and Stephen Guimond -- 8. Ocean-going weather and profiling radar for clouds and precipitation | P.T. May, B. Dolan, M. Katsumata, P.A. Kucera, V. Louf, A. Protat and C.R. Williams -- 9. A versatile stratosphere–troposphere radar at 205 MHz in the tropics | K. Mohanakumar, Titu K. Samson, P. Mohanan, K. Vasudevan, K.R. Santosh, V.K. Anandan, G. Viswanathan and B.M. Reddy -- 10. An integrated future US weather radar architecture for aviation | Mark E. Weber, John Y.N. Cho, Henry G. Thomas and James M. Kurdzo -- 11. The mitigation of ground clutter | J.C. Hubbert, S. Ellis and G. Meymaris -- 12. Polarimetric planar phased array radar – challenges for observing weather | Dusan S. Zrnic, Igor I. Ivic, Dordje Mirkovic, Lesya Borowska and Guifu Zhang
Record Nr. UNINA-9911007183503321
Bringi V. N  
Stevenage : , : Institution of Engineering & Technology, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Weather Radar : Precipitation Science, Scattering and Processing Algorithms, Volume 2
Advances in Weather Radar : Precipitation Science, Scattering and Processing Algorithms, Volume 2
Autore Bringi V. N
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2024
Descrizione fisica 1 online resource (692 pages)
Altri autori (Persone) MishraKumar Vijay
ThuraiMerhala
Collana Radar, Sonar and Navigation Series
Soggetto topico Radar meteorology
Precipitation (Meteorology)
ISBN 1-83724-459-6
1-5231-6299-6
1-83953-625-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Title -- Copyright -- Contents -- About the editors -- Preface -- Acknowledgments -- List of editors -- List of contributors -- List of reviewers -- Introduction to volume 2 -- 1 Phased array weather radar developed in Japan -- 1.1 Overview of ground-based PAWR -- 1.1.1 PAWR -- 1.1.2 MP-PAWR -- 1.2 Calibration of MP-PAWR -- 1.3 Quantitative precipitation estimation by PAWR -- 1.3.1 Observation -- 1.3.2 Comparison with rain gauge measurement -- 1.3.3 Ground clutter issue -- 1.4 Applications of MP-PAWR and PAWR -- 1.4.1 Life cycle of short-lived convective cloud -- 1.4.2 Direct comparison with optical observation -- 1.4.3 Application of VAD method and continuous vertical pointing observation -- 1.4.4 Precipitation system that exists above freezing level (use of VAD method and vertical pointing data) -- 1.4.5 3D structure of misoscale vortex -- 1.5 Summary -- References -- 2 Weather radar data calibration and monitoring -- 2.1 Introduction -- 2.1.1 Calibration and monitoring -- 2.1.2 Calibration levels and scales -- 2.1.3 Typical radar system -- 2.1.4 Calibration families -- 2.2 Measurement of radar moments -- 2.2.1 Weather radar equation -- 2.2.2 Polarimetric moments -- 2.2.3 Doppler moments -- 2.3 Methods -- 2.3.1 Internal calibration -- 2.3.2 External sources -- 2.3.3 External sink -- 2.3.4 External artificial targets -- 2.3.5 Weather targets -- 2.4 Recommendations and outlook to future developments -- References -- 3 Scattering by snow particles -- 3.1 Introduction -- 3.2 Ice particle models -- 3.3 Scattering of electromagnetic waves -- 3.4 The volume integral equation -- 3.4.1 Far-field scattering -- 3.5 Scattering methods involving volume discretization -- 3.5.1 Discrete dipole approximation -- 3.5.2 Rayleigh-Gans approximation -- 3.5.3 Self-similar Rayleigh-Gans approximation -- 3.5.4 Independent monomer approximation.
3.5.5 Method of moments -- 3.6 Single-scattering properties databases at microwave and sub-millimeter wavelengths -- 3.6.1 Single-scattering properties of ice hydrometeors -- 3.6.2 Status of current single-scattering properties databases -- References -- 4 Radar and hail: advances in scattering, detection, and sizing -- 4.1 Motivation-why hail? -- 4.2 A primer on hail and hailstorms -- 4.3 Two paradigms for radar-based hail detection and sizing: problems and possibilities -- 4.3.1 Paradigm 1: direct detection and sizing of hailstones -- 4.3.2 Paradigm 2: storm structural proxies for hail -- 4.4 Summary and concluding thoughts -- References -- 5 Understanding the role of rain drop shapes and fall velocities in rainfall estimation from polarimetric weather radars -- 5.1 Introduction -- 5.2 Drop shapes and fall velocities: an overview of previous work -- 5.2.1 Drop shapes -- 5.2.2 Fall speeds -- 5.2.3 Drop shapes and velocities from 2DVD -- 5.3 Scattering calculation for individual drops -- 5.3.1 Review of scattering calculation methods -- 5.3.2 Usability of commercial electromagnetic field solver software -- 5.3.3 Automatization of scattering calculations -- 5.3.4 Accuracy considerations -- 5.3.5 Determination of the RCS of raindrops via artificial neural networks -- 5.4 Example events -- 5.4.1 Outer bands of tropical depression Nate over Alabama -- 5.4.2 Embedded line convection over Alabama -- 5.4.3 Outer bands of category-1 Hurricane Irma over Alabama -- 5.4.4 A widespread event with embedded convective rain cells -- 5.4.5 Outer rain-bands of category-1 Hurricane Dorian -- 5.4.6 Tropical storm Michael over Delmarva peninsula -- 5.5 Summary -- Acknowledgment -- References -- 6 The raindrop size distribution - the unknown that holds everything together -- 6.1 Introduction -- 6.2 The DSD and its statistical moments -- 6.2.1 State variables.
6.2.2 Flux variables -- 6.2.3 Characteristic sizes -- 6.3 Parametric DSD models -- 6.3.1 Inventory of common DSD models -- 6.4 Normalized DSD models -- 6.4.1 Particular cases in DSD normalization -- 6.5 DSDs and weather radar -- 6.5.1 Radar variables -- 6.5.2 Rain rate retrieval from radar -- 6.5.3 DSD retrieval from radar -- 6.6 DSDs in numerical weather prediction models -- 6.7 Conclusions and future directions -- References -- 7 Fusion of radar polarimetry and atmospheric modeling -- 7.1 Introduction -- 7.2 Evaluation methodology, data, and tools -- 7.2.1 A dual strategy for model evaluation -- 7.2.2 Polarimetric C-band and X-band radar observations in Germany -- 7.2.3 The numerical weather prediction models COSMO and ICON-LAM -- 7.2.4 The polarimetric radar operators EMVORADO and B-PRO -- 7.2.5 The Shannon entropy to categorize stratiform and convective events -- 7.2.6 Combined observed and synthetic data at X band and C band -- 7.3 Exploitation of microphysical retrievals for model evaluation and improvement -- 7.3.1 Quantitative precipitation estimation for the July 2021 Ahrtal flooding in western Germany -- 7.3.2 Quasi-vertical profiles of ice microphysical retrievals -- 7.3.3 Hydrometeor classification and quantification schemes -- 7.4 Evaluation in radar observation space -- 7.4.1 Converging modeled and observed quasi-vertical profiles -- 7.4.2 Statistics of observed and modeled polarimetric variables -- 7.4.3 Process signatures and dynamics in convection -- 7.5 (Polarimetric) radar data assimilation -- 7.5.1 The assimilation of 3D reflectivities and radial winds -- 7.5.2 The assimilation of 3D polarimetry-derived liquid and ice-water content -- 7.5.3 The assimilation of object information -- 7.6 Summary and conclusions -- Acknowledgments -- References -- 8 End-to-end simulations of dual-polarization tornado debris signatures.
8.1 Background and importance of dual-polarization radar signatures of tornadoes -- 8.1.1 Overview of dual-polarization radar variables and their application to meteorological echoes and debris -- 8.1.2 Significance of TDSs in operational forecasting -- 8.1.3 Determining the structure of tornadoes and their debris fields -- 8.1.4 Challenges to understanding dual-polarization tornado debris signatures -- 8.2 Theory of dual-polarization weather radar simulation -- 8.3 A time-series dual-polarization radar simulator for tornado debris -- 8.3.1 Radar simulator inputs -- 8.3.2 Radar simulator implementation -- 8.4 Radar simulations of tornado debris signatures -- 8.4.1 Electromagnetic representation of debris scatterers -- 8.4.2 TDSs and varied debris characteristics -- 8.4.3 Relationship between TDSs and tornado wind characteristics -- 8.5 Conclusions -- Acknowledgments -- References -- 9 Satellite combined radar-radiometer algorithms -- 9.1 Introduction -- 9.2 Fundamental models and methods -- 9.2.1 Precipitation particles and their electromagnetic properties -- 9.2.2 Radar and radiometer models -- 9.2.3 Elements of optimal estimation theory -- 9.2.4 Additional matters -- 9.3 GPM combined observations and retrievals -- 9.3.1 Observations -- 9.3.2 Machine learning-based evaluation -- 9.3.3 Combined estimates -- 9.4 Summary and conclusions -- References -- 10 Weather radar measurements in Antarctica -- 10.1 About Antarctica -- 10.2 The challenge of measuring clouds and precipitation in Antarctica -- 10.2.1 Ground-based measurements -- 10.2.2 The added value of CloudSat -- 10.3 Ground-based weather radars -- 10.3.1 Added value of ground-based weather radars -- 10.3.2 Deployment challenges -- 10.3.3 Milestone campaigns -- 10.4 Contribution to Antarctic meteorology -- 10.4.1 Quantitative precipitation studies -- 10.4.2 Local-scale precipitation processes.
10.4.3 Large-scale interactions -- 10.4.4 Comparison with satellites -- 10.5 Concluding remarks and perspectives -- Funding and acknowledgment -- References -- 11 Radar advances related to severe weather -- 11.1 Radars are amazing tools to observe severe weather -- 11.2 But, traditional radars and networks cannot answer some of the most critical research questions -- 11.2.1 Radars usually scan too slowly: many hazardous, high-impact, difficult to forecast phenomena evolve very quickly -- 11.2.2 Radar distributions are too coarse: many of the most impactful weather phenomena are small and too far away -- 11.2.3 Radars cannot scan near the ground -- 11.2.4 Radars do not measure vector wind fields -- 11.2.5 Temporary stationary high-density multiple-radar networks: a limited solution for research -- 11.3 How to address these limitations -- 11.3.1 Easily carriable/deployable small radars -- 11.3.2 Radars on airplanes -- 11.3.3 Denser arrays of small radars -- 11.4 Invention of the Doppler On Wheels (DOWs) -- 11.5 Severe and high-impact weather observations with mobile DOWs -- 11.5.1 Tornadoes -- 11.5.2 Hurricanes -- 11.5.3 Other severe and high-impact weather -- 11.6 Mobile multiple-Doppler -- 11.7 Dual-polarization observations of severe storms -- 11.8 Other groups make "DOWs," leading to new paradigm for mesoscale weather studies -- 11.9 Time/space → rapid-scan -- 11.10 A different compromise: the C-band On Wheels (COW) -- 11.11 The modern paradigm: mobile radar combined with mobile in situ observations -- 11.11.1 Fortuitous dual-Doppler tornado data -- 11.12 Where do we go from here? -- 11.12.1 Operational phased array and dense radar networks -- 11.12.2 Bistatic radar networks -- 11.12.3 Adaptable/quickly deployable almost-mobile radars may replace stationary research radars -- 11.12.4 Airborne Phased Array Radar (APAR).
11.12.5 Speculative technologies and "fishing".
Record Nr. UNINA-9911007170803321
Bringi V. N  
Stevenage : , : Institution of Engineering & Technology, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Advances in Weather Radar : Emerging Applications, Volume 3
Advances in Weather Radar : Emerging Applications, Volume 3
Autore Bringi V. N
Edizione [1st ed.]
Pubbl/distr/stampa Stevenage : , : Institution of Engineering & Technology, , 2024
Descrizione fisica 1 online resource (377 pages)
Altri autori (Persone) MishraKumar Vijay
ThuraiMerhala
Collana Radar, Sonar and Navigation Series
Soggetto topico Radar
Precipitation (Meteorology)
ISBN 1-83724-460-X
1-5231-6300-3
1-83953-627-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Contents -- About the editors -- Preface -- Acknowledgments -- List of editors -- List of contributors -- List of reviewers -- Introduction to volume 3 -- 1. Radar hydrology | Witold F. Krajewski and James A. Smith -- 2. Quantitative precipitation estimation from weather radars, personal weather stations and commercial microwave links | Aart Overeem, Remko Uijlenhoet and Hidde Leijnse -- 3. Quantitative weather radar: a research to operations perspective in Canada | David Hudak, Daniel Michelson, Sudesh Boodoo, Norman Donaldson, Paul Joe, Andre´s Pe´rez Hortal, Janti Reid, Peter Rodriguez and Brian Sheppard -- 4. Volcanic plume retrieval using weather radar | Luigi Mereu, Frank S. Marzano, Simona Scollo, Mario Montopoli and Gianfranco Vulpiani -- 5. The effect of weather on the performance of mm-wave and sub-THz automotive radar | F. Norouzian, Y. Xiao and M. Gashinova -- 6. Spectral interference in weather radars from wireless communication systems | Elena Saltikoff, John Y. N. Cho and Philippe Tristant -- 7. Advances in weather radar monitoring of bird movement | Cecilia Nilsson, Adriaan Dokter, Silke Bauer, Kyle Horton and Andrew Farnsworth -- 8. Complementary operation of Doppler radar and lidar at airports | Frank Gekat, Ronald Hannesen, Sebastian Kauczok, Marcus Pool, Christian Schiefer and Albert Tows -- Epilogue
Altri titoli varianti Advances in Weather Radar. Volume 3
Record Nr. UNINA-9911007166803321
Bringi V. N  
Stevenage : , : Institution of Engineering & Technology, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui