top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
2002 survey of public participation in the arts [[electronic resource]]
2002 survey of public participation in the arts [[electronic resource]]
Pubbl/distr/stampa Washington, DC : , : National Endowment for the Arts, , [2004]
Descrizione fisica 1 online resource (vi, 70 pages) : illustrations
Altri autori (Persone) BradshawTom
NicholsBonnie
Collana Research division report
Soggetto topico Arts audiences - United States
Arts surveys - United States
Arts - United States - Citizen participation
Soggetto genere / forma Statistics.
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Altri titoli varianti Survey of public participation in the arts
Record Nr. UNINA-9910704496803321
Washington, DC : , : National Endowment for the Arts, , [2004]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Cryogenics : Fundamentals, Foundations and Applications
Cryogenics : Fundamentals, Foundations and Applications
Autore Evans Beth
Edizione [1st ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2023
Descrizione fisica 1 online resource (296 pages)
Altri autori (Persone) VandoreJohn
BradshawTom
Collana IOP Ebooks Series
ISBN 0-7503-4404-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgement -- Editor biographies -- Tom Bradshaw -- Beth Evans -- John Vandore -- Biographies of contributors -- List of contributors -- Chapter 1 Fundamentals of cryogenics -- 1.1 Introduction -- 1.2 What do we mean by cryogenics? -- 1.3 Role of cryogenics in the economy -- 1.4 Target audience and how they will make use of this book -- 1.5 Physical effects of cryogenics -- 1.6 Role of cryogenics in medical applications -- 1.7 Role of cryogenics in science -- 1.8 Role of cryogenics in energy and the environment -- 1.9 Brief resumé of the chapters -- Chapter 2 What is cryogenics?-UK perspective and brief history -- 2.1 Introduction -- 2.2 Brief history of cryogenics -- 2.3 History of cryogenics in the UK -- 2.4 Cryogenics industry in the UK -- 2.5 Growth of the cryogenic industry in the UK -- 2.6 Cryogenics in the UK economy -- 2.7 The British Cryogenics Council -- References -- Chapter 3 Cryostat design -- 3.1 Fundamentals of cryostat design -- 3.1.1 Introduction -- 3.1.2 Cooling methods -- 3.1.3 Heat gains -- 3.1.4 Types of cryostats -- 3.1.5 Cryostat construction -- 3.1.6 Sealing and leak detection -- 3.2 Thermal balance and insulation techniques -- 3.2.1 Introduction -- 3.2.2 Heat flows -- 3.2.3 Thermal modelling -- 3.2.4 Managing uncertainty -- 3.3 Insulation and isolation -- 3.3.1 Introduction -- 3.3.2 Multi-layer insulation (MLI) -- 3.4 Material properties -- 3.4.1 Introduction -- 3.4.2 Thermal conductive properties -- 3.5 Heat exchangers -- 3.5.1 Introduction -- 3.5.2 Summary and use in JT cryocoolers -- 3.6 Introduction to temperature scales -- 3.6.1 Introduction -- 3.6.2 Description of the current scales in use: the ITS-90 and the PLTS-2000 -- 3.6.3 Scale realisation uncertainties -- 3.6.4 The kelvin redefinition, the mise-en-pratique for the definition of the kelvin and the future of temperature measurement.
3.7 Practical thermometry -- 3.7.1 Introduction -- 3.7.2 Thermometer calibration -- 3.7.3 Thermal and electrical stabilisation of temperature measurements -- 3.7.4 Types of thermometers -- 3.8 Cryogenic instrumentation -- 3.8.1 Introduction -- 3.8.2 Flow -- 3.8.3 Pressure -- 3.8.4 Strain -- 3.8.5 Magnetic field -- 3.8.6 Light sensors -- 3.8.7 Motion sensors -- 3.8.8 Liquid level measurement -- References -- Chapter 4 Closed cycle refrigerators -- 4.1 Introduction -- 4.2 The imperative for CCRs -- 4.2.1 Stirling engine -- 4.3 Gifford McMahon cryocoolers -- 4.3.1 Use with superconducting magnets -- 4.4 Pulse tube refrigerators -- 4.5 Thermoacoustic refrigerators -- 4.6 Joule-Thomson refrigerators -- 4.7 Vapour compression refrigerators -- 4.7.1 Standard vapour compression refrigerator -- 4.7.2 Cascade refrigerators -- 4.7.3 Refrigerants -- 4.7.4 Refrigerator design -- 4.8 Turbo Brayton refrigerators -- 4.9 Thermoelectric coolers -- 4.10 The Carnot cycle -- 4.11 Summary -- References -- Chapter 5 Very low temperature techniques -- 5.1 Dilution refrigerators -- 5.1.1 Introduction -- 5.1.2 Theoretical description -- 5.1.3 Practical description -- 5.1.4 Gas handling -- 5.1.5 Low temperature environment and mixture condensation -- 5.1.6 Heat exchangers -- 5.1.7 Mixing chamber -- 5.1.8 Thermometry, wiring and thermal anchoring -- 5.1.9 Fixing incorrect fridge mixture -- 5.1.10 Modern applications -- 5.1.11 Quantum computation -- 5.1.12 Quantum fluids and solids -- 5.1.13 Cosmological phenomena -- 5.2 Adiabatic demagnetisation-electronic and nuclear -- 5.2.1 Introduction -- 5.2.2 Principle of operation -- 5.2.3 Theoretical description -- 5.2.4 Practical description and limitations -- 5.2.5 State-of-the-art -- 5.2.6 Modern trends -- 5.3 Helium evaporative sorption coolers -- 5.3.1 Introduction -- 5.3.2 Principle -- 5.3.3 Basic sizing -- 5.3.4 Sorption pumping.
5.3.5 Multi-stage systems -- 5.3.6 Space applications -- 5.3.7 Space-borne evaporative helium cooler -- 5.3.8 Suspension system -- 5.3.9 Gas gap heat switches -- 5.3.10 Hybrid cooler -- 5.4 Laser cooling and low temperatures in atomic physics -- 5.4.1 Introduction -- 5.4.2 Ion trapping -- 5.4.3 Inductive cooling -- 5.4.4 Sideband cooling -- 5.4.5 Laser cooling -- 5.4.6 Sympathetic cooling -- 5.4.7 Neutral atom trapping -- References -- Chapter 6 Cryogenics in particle accelerators and fusion reactors -- 6.1 Overview of requirements -- 6.1.1 Introduction -- 6.1.2 Cooling of superconducting magnets -- 6.1.3 Cooling of superconducting radio frequency cavities -- 6.1.4 Provision of dense pure fluids -- 6.1.5 Provision of large clean vacuum spaces -- 6.1.6 Sample environments -- 6.2 Distribution techniques -- 6.3 Cryogenics for superconducting RF cavities -- 6.3.1 Introduction -- 6.3.2 SRF cavity theory and operation -- 6.3.3 Vertical cavity testing -- 6.3.4 Cryomodule integration and testing -- References -- Chapter 7 Propulsion, energy storage and renewables -- 7.1 Introduction -- 7.2 Electric aircraft and electric propulsion -- 7.2.1 Introduction -- 7.2.2 Electric propulsion issues -- 7.2.3 Electrical power systems -- 7.2.4 Cryogenic superconducting electric power systems -- 7.2.5 Superconducting propulsion systems -- 7.2.6 Cryogenic systems and fuel tanks -- 7.2.7 Summary -- Acknowledgements -- 7.3 Cryogenics in LNG and biomethane -- 7.3.1 The UK perspective -- 7.3.2 Storage and control -- 7.3.3 Motive power -- 7.4 Hydrogen-energy carrier of the future -- 7.5 Peter Dearman's liquid air engine -- 7.6 Liquid air energy storage (LAES) and Highview Power's 'CRYOBattery' -- 7.6.1 Introduction -- 7.6.2 Highview LAES system -- 7.6.3 Conclusions -- 7.7 Looking to the future-Covid-19: pathway to a lasting legacy for clean cooling -- 7.7.1 Introduction.
7.7.2 Systems approach to cooling -- 7.7.3 Birmingham centre for cryogenic energy storage -- 7.8 Superconducting electrical machines for wind turbines -- 7.8.1 Wind turbine drivelines -- 7.8.2 Driveline developments -- 7.8.3 Offshore wind turbines in extreme environments -- 7.8.4 Superconducting generator design features -- 7.8.5 Superconducting bulk materials -- 7.8.6 Summary -- References -- Chapter 8 Life science and healthcare -- 8.1 Cryogenics and its application to the biological sciences -- 8.1.1 Preserving biological materials in the laboratory -- 8.1.2 Other applications -- 8.1.3 Concluding remarks -- 8.2 Cryogenic techniques in biological electron microscopy -- 8.2.1 Electron microscopy sample preparation and the motivation for the use of cryo-fixation -- 8.2.2 The development of cryo-EM and the current state-of-the-art -- 8.2.3 The use of cryogenic techniques in correlative light and electron microscopy -- 8.2.4 Challenges and future perspectives -- 8.3 Cryosurgery -- 8.3.1 History of cryosurgery -- 8.3.2 Pre surgical device applications -- 8.3.3 Early surgical device applications -- 8.3.4 Modern day cryosurgical devices -- 8.3.5 Liquefied gas cryosurgical applications -- 8.3.6 Gas-based cryosurgical applications -- 8.3.7 Liquefied gas cryosurgical devices -- 8.3.8 Gas-based cryosurgical device -- 8.4 Cryotherapy -- 8.4.1 Cryochambers -- 8.4.2 Definition and categorization of the cryotherapy devices -- 8.4.3 The standard (Wroclaw-type) cryochamber -- 8.4.4 Cryosauna -- 8.4.5 Safety -- 8.5 Cryogenics in proton and heavier-ion radiotherapy -- 8.5.1 Rationale for proton radiotherapy -- 8.5.2 Early history of proton radiotherapy -- 8.5.3 Cryo-cooled superconducting technology in modern proton radiotherapy -- 8.5.4 Heavier-ion radiotherapy -- References -- Chapter 9 Industrial applications -- 9.1 Introduction.
9.2 Cryogenic condensation for solvent recovery -- 9.3 Superconducting magnetic separation -- 9.3.1 Magnetic separation, purpose and principles -- 9.3.2 Basic concepts in magnetic separation -- 9.3.3 Permanent magnets, drums -- 9.3.4 Electric magnets, carousels, iron-enclosed pot magnets -- 9.3.5 Advent of superconductive magnets -- 9.3.6 Major market penetration with MRI magnets -- 9.3.7 Application to magnetic separation -- 9.3.8 First appearances of magnetic separators -- 9.3.9 Cooling technologies for superconducting magnets, and new magnet materials -- 9.3.10 Economic advantages/disadvantages -- 9.4 Deep cryogenic treatment -- 9.5 Applications of cryogenics in the food industry -- References.
Record Nr. UNINA-9910861040303321
Evans Beth  
Bristol : , : Institute of Physics Publishing, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui