top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Change detection and image time series analysis . 2 : supervised methods / / coordinated by Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Change detection and image time series analysis . 2 : supervised methods / / coordinated by Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated
Descrizione fisica 1 online resource (288 pages) : illustrations (chiefly colour)
Disciplina 621.367
Soggetto topico Image analysis
ISBN 9781119882282
1119882281
1-119-88229-X
1-119-88227-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ; 1. Hierarchical Markov Random Fields for High Resolution Land Cover Classification of Multisensor and Multiresolution Image Time Series / Ihsen Hedhli, Gabriele Moser, Sebastiano B. Serpico and Josiane Zerubia -- ; 2. Pixel-based Classification Techniques for Satellite Image Time Series / Charlotte Pelletier and Silvia Valero -- ; 3. Semantic Analysis of Satellite Image Time Series / Corneliu Octavian Dumitru and Mihai Datcu -- ; 4. Optical Satellite Image Time Series Analysis for Environment Applications: From Classical Methods to Deep Learning and Beyond / Matthieu Molinier, Jukka Miettinen, Dino Ienco, Shi Qiu and Zhe Zhu -- ; 5. A Review on Multi-temporal Earthquake Damage Assessment Using Satellite Images / Gülşen Taşkin, Esra Erten and Enes Oğuzhan Alataş -- ; 6. Multiclass Multilabel Change of State Transfer Learning from Image Time Series / Abdourrahmane M. Atto, Héla Hadhri, Flavien Vernier and Emmanuel Trouvé.
Record Nr. UNINA-9910829874203321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Change detection and image time series analysis 2 : supervised methods / / edited by Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Change detection and image time series analysis 2 : supervised methods / / edited by Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Descrizione fisica 1 online resource (288 pages)
Disciplina 621.367
Soggetto topico Image analysis
Soggetto genere / forma Electronic books.
ISBN 1-119-88228-1
1-119-88229-X
1-119-88227-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- List of Notations -- 1. Hierarchical Markov Random Fields for High Resolution Land Cover Classification of Multisensor and Multiresolution Image Time Series -- 1.1. Introduction -- 1.1.1. The role of multisensor data in time series classification -- 1.1.2. Multisensor and multiresolution classification -- 1.1.3. Previous work -- 1.2. Methodology -- 1.2.1. Overview of the proposed approaches -- 1.2.2. Hierarchical model associated with the first proposed method -- 1.2.3. Hierarchical model associated with the second proposed method -- 1.2.4. Multisensor hierarchical MPM inference -- 1.2.5. Probability density estimation through -- 1.3. Examples of experimental results -- 1.3.1. Results of the first method -- 1.3.2. Results of the second method -- 1.4. Conclusion -- 1.5. Acknowledgments -- 1.6. References -- 2. Pixel-based Classification Techniques for Satellite Image Time Series -- 2.1. Introduction -- 2.2. Basic concepts in supervised remote sensing classification -- 2.2.1. Preparing data before it is fed into classification algorithms -- 2.2.2. Key considerations when training supervised classifiers -- 2.2.3. Performance evaluation of supervised classifiers -- 2.3. Traditional classification algorithms -- 2.3.1. Support vector machines -- 2.3.2. Random forests -- 2.3.3. k-nearest neighbor -- 2.4. Classification strategies based on temporal feature representations -- 2.4.1. Phenology-based classification approaches -- 2.4.2. Dictionary-based classification approaches -- 2.4.3. Shapelet-based classification approaches -- 2.5. Deep learning approaches -- 2.5.1. Introduction to deep learning -- 2.5.2. Convolutional neural networks -- 2.5.3. Recurrent neural networks -- 2.6. References -- 3. Semantic Analysis of Satellite Image Time Series -- 3.1. Introduction.
3.1.1. Typical SITS examples -- 3.1.2. Irregular acquisitions -- 3.1.3. The chapter structure -- 3.2. Why are semantics needed in SITS? -- 3.3. Similarity metrics -- 3.4. Feature methods -- 3.5. Classification methods -- 3.5.1. Active learning -- 3.5.2. Relevance feedback -- 3.5.3. Compression-based pattern recognition -- 3.5.4. Latent Dirichlet allocation -- 3.6. Conclusion -- 3.7. Acknowledgments -- 3.8. References -- 4. Optical Satellite Image Time Series Analysis for Environment Applications: From Classical Methods to Deep Learning and Beyond -- 4.1. Introduction -- 4.2. Annual time series -- 4.2.1. Overview of annual time series methods -- 4.2.2. Examples of annual times series analysis applications for environmental monitoring -- 4.2.3. Towards dense time series analysis -- 4.3. Dense time series analysis using all available data -- 4.3.1. Making dense time series consistent -- 4.3.2. Change detection methods -- 4.3.3. Summary and future developments -- 4.4. Deep learning-based time series analysis approaches -- 4.4.1. Recurrent Neural Network (RNN) for Satellite Image Time Series -- 4.4.2. Convolutional Neural Networks (CNN) for Satellite Image Time Series -- 4.4.3. Hybrid models: Convolutional Recurrent Neural Network (ConvRNN) models for Satellite Image Time Series -- 4.4.4. Synthesis and future developments -- 4.5. Beyond satellite image time series and deep learning: convergence between time series and video approaches -- 4.5.1. Increased image acquisition frequency: from time series to spaceborne time-lapse and videos -- 4.5.2. Deep learning and computer vision as technology enablers -- 4.5.3. Future steps -- 4.6. References -- 5. A Review on Multi-temporal Earthquake Damage Assessment Using Satellite Images -- 5.1. Introduction -- 5.1.1. Research methodology and statistics -- 5.2. Satellite-based earthquake damage assessment.
5.3. Pre-processing of satellite images before damage assessment -- 5.4. Multi-source image analysis -- 5.5. Contextual feature mining for damage assessment -- 5.5.1. Textural features -- 5.5.2. Filter-based methods -- 5.6. Multi-temporal image analysis for damage assessment -- 5.6.1. Use of machine learning in damage assessment problem -- 5.6.2. Rapid earthquake damage assessment -- 5.7. Understandingdamage followingan earthquakeusing satellite-based SAR -- 5.7.1. SAR fundamental parameters and acquisition vector -- 5.7.2. Coherent methods for damage assessment -- 5.7.3. Incoherent methods for damage assessment -- 5.7.4. Post-earthquake-only SAR data-based damage assessment -- 5.7.5. Combination of coherent and incoherent methods for damage assessment -- 5.7.6. Summary -- 5.8. Use of auxiliary data sources -- 5.9. Damage grades -- 5.10. Conclusion and discussion -- 5.11. References -- 6. Multiclass Multilabel Change of State Transfer Learning from Image Time Series -- 6.1. Introduction -- 6.2. Coarse- to fine-grained change of state dataset -- 6.3. Deep transfer learning models for change of state classification -- 6.3.1. Deep learning model library -- 6.3.2. Graph structures for the CNN library -- 6.3.3. Dimensionalities of the learnables for the CNN library -- 6.4. Change of state analysis -- 6.4.1. Transfer learning adaptations for the change of state classification issues -- 6.4.2. Experimental results -- 6.5. Conclusion -- 6.6. Acknowledgments -- 6.7. References -- List of Authors -- Index -- Summary of Volume 1 -- EULA.
Record Nr. UNINA-9910554872203321
Hoboken, New Jersey : , : John Wiley & Sons, Incorporated, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Change detection and image time-series analysis . 1 : unsupervised methods / / Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Change detection and image time-series analysis . 1 : unsupervised methods / / Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Autore Atto Abdourrahmane M.
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (304 pages)
Disciplina 519.55
Soggetto topico Time-series analysis
Time-series analysis - Data processing
Soggetto genere / forma Electronic books.
ISBN 1-119-88225-7
1-119-88226-5
1-119-88224-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- List of Notations -- Chapter 1. Unsupervised Change Detection in Multitemporal Remote Sensing Images -- 1.1. Introduction -- 1.2. Unsupervised change detection in multispectral images -- 1.2.1. Related concepts -- 1.2.2. Open issues and challenges -- 1.2.3. Spectral-spatial unsupervised CD techniques -- 1.3. Unsupervised multiclass change detection approaches based on modeling spectral-spatial information -- 1.3.1. Sequential spectral change vector analysis (S2CVA) -- 1.3.2. Multiscale morphological compressed change vector analysis -- 1.3.3. Superpixel-level compressed change vector analysis -- 1.4. Dataset description and experimental setup -- 1.4.1. Dataset description -- 1.4.2. Experimental setup -- 1.5. Results and discussion -- 1.5.1. Results on the Xuzhou dataset -- 1.5.2. Results on the Indonesia tsunami dataset -- 1.6. Conclusion -- 1.7. Acknowledgements -- 1.8. References -- Chapter 2. Change Detection inTime Series of Polarimetric SAR Images -- 2.1. Introduction -- 2.1.1. The problem -- 2.1.2. Important concepts illustrated bymeans of the gamma distribution -- 2.2. Test theory and matrix ordering -- 2.2.1. Test for equality of two complex Wishart distributions -- 2.2.2. Test for equality of k-complex Wishart distributions -- 2.2.3. The block diagonal case -- 2.2.4. The Loewner order -- 2.3. The basic change detection algorithm -- 2.4. Applications -- 2.4.1. Visualizing changes -- 2.4.2. Fieldwise change detection -- 2.4.3. Directional changes using the Loewner ordering -- 2.4.4. Software availability -- 2.5. References -- Chapter 3. An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image Time Series -- 3.1. Introduction -- 3.2. Dataset description -- 3.3. Statistical modeling of SAR images -- 3.3.1. The data.
3.3.2. Gaussian model -- 3.3.3. Non-Gaussian modeling -- 3.4. Dissimilarity measures -- 3.4.1. Problem formulation -- 3.4.2. Hypothesis testing statistics -- 3.4.3. Information-theoretic measures -- 3.4.4. Riemannian geometry distances -- 3.4.5. Optimal transport -- 3.4.6. Summary -- 3.4.7. Results of change detectors on the UAVSAR dataset -- 3.5. Change detection based on structured covariances -- 3.5.1. Low-rank Gaussian change detector -- 3.5.2. Low-rank compound Gaussian change detector -- 3.5.3. Results of low-rank change detectors on the UAVSAR dataset -- 3.6. Conclusion -- 3.7. References -- Chapter 4. Unsupervised Functional Information Clustering in Extreme Environments from Filter Banks and Relative Entropy -- 4.1. Introduction -- 4.2. Parametric modeling of convnet features -- 4.3. Anomaly detection in image time series -- 4.4. Functional image time series clustering -- 4.5. Conclusion -- 4.6. References -- Chapter 5. Thresholds and Distances to Better Detect Wet Snow over Mountains with Sentinel-1 Image Time Series -- 5.1. Introduction -- 5.2. Test area and data -- 5.3. Wet snow detection using Sentinel-1 -- 5.4. Metrics to detect wet snow -- 5.5. Discussion -- 5.6. Conclusion -- 5.7. Acknowledgements -- 5.8. References -- Chapter 6. Fractional Field Image Time Series Modeling and Application to Cyclone Tracking -- 6.1. Introduction -- 6.2. Random field model of a cyclone texture -- 6.2.1. Cyclone texture feature -- 6.2.2. Wavelet-based power spectral densities and cyclone -- 6.2.3. Fractional spectral power decay model -- 6.3. Cyclone field eye detection and tracking -- 6.3.1. Cyclone eye detection -- 6.3.2. Dynamic fractal field eye tracking -- 6.4. Cyclone field intensity evolution prediction -- 6.5. Discussion -- 6.6. Acknowledgements -- 6.7. References.
Chapter 7. Graph of Characteristic Points for Texture Tracking: Application to Change Detection and Glacier Flow Measurement from SAR Image -- 7.1. Introduction -- 7.2. Texture representation and characterization using local extrema -- 7.2.1. Motivation and approach -- 7.2.2. Local extrema keypoints within SAR images -- 7.3. Unsupervised change detection -- 7.3.1. Proposed framework -- 7.3.2. Weighted graph construction from keypoints -- 7.3.3. Change measure (CM) generation -- 7.4. Experimental study -- 7.4.1. Data description and evaluation criteria -- 7.4.2. Change detection results -- 7.4.3. Sensitivity to parameters -- 7.4.4. Comparison with the NLM model -- 7.4.5. Analysis of the algorithm complexity -- 7.5. Application to glacier flow measurement -- 7.5.1. Proposed method -- 7.5.2. Results -- 7.6. Conclusion -- 7.7. References -- Chapter 8. Multitemporal Analysis of Sentinel-1/2 Images for Land Use Monitoring at Regional Scale -- 8.1. Introduction -- 8.2. Proposed method -- 8.2.1. Test site and data -- 8.3. SAR processing -- 8.4. Optical processing -- 8.5. Combination layer -- 8.6. Results -- 8.7. Conclusion -- 8.8. References -- Chapter 9. Statistical Difference Models for Change Detection in Multispectral Images -- 9.1. Introduction -- 9.2. Overview of the change detection problem -- 9.2.1. Change detection methods for multispectral images -- 9.2.2. Challenges addressed in this chapter -- 9.3. The Rayleigh-Rice mixture model for the magnitude of the difference image -- 9.3.1. Magnitude image statistical mixture model -- 9.3.2. Bayesian decision -- 9.3.3. Numerical approach to parameter estimation -- 9.4. A compound multiclass statistical model of the difference image -- 9.4.1. Difference image statistical mixture model -- 9.4.2. Magnitude image statistical mixture model -- 9.4.3. Bayesian decision.
9.4.4. Numerical approach to parameter estimation -- 9.5. Experimental results -- 9.5.1. Dataset description -- 9.5.2. Experimental setup -- 9.5.3. Test 1: Two-class Rayleigh-Rice mixture model -- 9.5.4. Test 2: Multiclass Rician mixture model -- 9.6. Conclusion -- 9.7. References -- List of Authors -- Index -- Summary of Volume 2 -- EULA.
Record Nr. UNINA-9910554803303321
Atto Abdourrahmane M.  
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Change detection and image time-series analysis . 1 : unsupervised methods / / Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Change detection and image time-series analysis . 1 : unsupervised methods / / Abdourrahmane M. Atto, Francesca Bovolo, Lorenzo Bruzzone
Autore Atto Abdourrahmane M.
Edizione [1st edition.]
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (304 pages)
Disciplina 519.55
Soggetto topico Time-series analysis
ISBN 1-119-88225-7
1-119-88226-5
1-119-88224-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Half-Title Page -- Title Page -- Copyright Page -- Contents -- Preface -- List of Notations -- Chapter 1. Unsupervised Change Detection in Multitemporal Remote Sensing Images -- 1.1. Introduction -- 1.2. Unsupervised change detection in multispectral images -- 1.2.1. Related concepts -- 1.2.2. Open issues and challenges -- 1.2.3. Spectral-spatial unsupervised CD techniques -- 1.3. Unsupervised multiclass change detection approaches based on modeling spectral-spatial information -- 1.3.1. Sequential spectral change vector analysis (S2CVA) -- 1.3.2. Multiscale morphological compressed change vector analysis -- 1.3.3. Superpixel-level compressed change vector analysis -- 1.4. Dataset description and experimental setup -- 1.4.1. Dataset description -- 1.4.2. Experimental setup -- 1.5. Results and discussion -- 1.5.1. Results on the Xuzhou dataset -- 1.5.2. Results on the Indonesia tsunami dataset -- 1.6. Conclusion -- 1.7. Acknowledgements -- 1.8. References -- Chapter 2. Change Detection inTime Series of Polarimetric SAR Images -- 2.1. Introduction -- 2.1.1. The problem -- 2.1.2. Important concepts illustrated bymeans of the gamma distribution -- 2.2. Test theory and matrix ordering -- 2.2.1. Test for equality of two complex Wishart distributions -- 2.2.2. Test for equality of k-complex Wishart distributions -- 2.2.3. The block diagonal case -- 2.2.4. The Loewner order -- 2.3. The basic change detection algorithm -- 2.4. Applications -- 2.4.1. Visualizing changes -- 2.4.2. Fieldwise change detection -- 2.4.3. Directional changes using the Loewner ordering -- 2.4.4. Software availability -- 2.5. References -- Chapter 3. An Overview of Covariance-based Change Detection Methodologies in Multivariate SAR Image Time Series -- 3.1. Introduction -- 3.2. Dataset description -- 3.3. Statistical modeling of SAR images -- 3.3.1. The data.
3.3.2. Gaussian model -- 3.3.3. Non-Gaussian modeling -- 3.4. Dissimilarity measures -- 3.4.1. Problem formulation -- 3.4.2. Hypothesis testing statistics -- 3.4.3. Information-theoretic measures -- 3.4.4. Riemannian geometry distances -- 3.4.5. Optimal transport -- 3.4.6. Summary -- 3.4.7. Results of change detectors on the UAVSAR dataset -- 3.5. Change detection based on structured covariances -- 3.5.1. Low-rank Gaussian change detector -- 3.5.2. Low-rank compound Gaussian change detector -- 3.5.3. Results of low-rank change detectors on the UAVSAR dataset -- 3.6. Conclusion -- 3.7. References -- Chapter 4. Unsupervised Functional Information Clustering in Extreme Environments from Filter Banks and Relative Entropy -- 4.1. Introduction -- 4.2. Parametric modeling of convnet features -- 4.3. Anomaly detection in image time series -- 4.4. Functional image time series clustering -- 4.5. Conclusion -- 4.6. References -- Chapter 5. Thresholds and Distances to Better Detect Wet Snow over Mountains with Sentinel-1 Image Time Series -- 5.1. Introduction -- 5.2. Test area and data -- 5.3. Wet snow detection using Sentinel-1 -- 5.4. Metrics to detect wet snow -- 5.5. Discussion -- 5.6. Conclusion -- 5.7. Acknowledgements -- 5.8. References -- Chapter 6. Fractional Field Image Time Series Modeling and Application to Cyclone Tracking -- 6.1. Introduction -- 6.2. Random field model of a cyclone texture -- 6.2.1. Cyclone texture feature -- 6.2.2. Wavelet-based power spectral densities and cyclone -- 6.2.3. Fractional spectral power decay model -- 6.3. Cyclone field eye detection and tracking -- 6.3.1. Cyclone eye detection -- 6.3.2. Dynamic fractal field eye tracking -- 6.4. Cyclone field intensity evolution prediction -- 6.5. Discussion -- 6.6. Acknowledgements -- 6.7. References.
Chapter 7. Graph of Characteristic Points for Texture Tracking: Application to Change Detection and Glacier Flow Measurement from SAR Image -- 7.1. Introduction -- 7.2. Texture representation and characterization using local extrema -- 7.2.1. Motivation and approach -- 7.2.2. Local extrema keypoints within SAR images -- 7.3. Unsupervised change detection -- 7.3.1. Proposed framework -- 7.3.2. Weighted graph construction from keypoints -- 7.3.3. Change measure (CM) generation -- 7.4. Experimental study -- 7.4.1. Data description and evaluation criteria -- 7.4.2. Change detection results -- 7.4.3. Sensitivity to parameters -- 7.4.4. Comparison with the NLM model -- 7.4.5. Analysis of the algorithm complexity -- 7.5. Application to glacier flow measurement -- 7.5.1. Proposed method -- 7.5.2. Results -- 7.6. Conclusion -- 7.7. References -- Chapter 8. Multitemporal Analysis of Sentinel-1/2 Images for Land Use Monitoring at Regional Scale -- 8.1. Introduction -- 8.2. Proposed method -- 8.2.1. Test site and data -- 8.3. SAR processing -- 8.4. Optical processing -- 8.5. Combination layer -- 8.6. Results -- 8.7. Conclusion -- 8.8. References -- Chapter 9. Statistical Difference Models for Change Detection in Multispectral Images -- 9.1. Introduction -- 9.2. Overview of the change detection problem -- 9.2.1. Change detection methods for multispectral images -- 9.2.2. Challenges addressed in this chapter -- 9.3. The Rayleigh-Rice mixture model for the magnitude of the difference image -- 9.3.1. Magnitude image statistical mixture model -- 9.3.2. Bayesian decision -- 9.3.3. Numerical approach to parameter estimation -- 9.4. A compound multiclass statistical model of the difference image -- 9.4.1. Difference image statistical mixture model -- 9.4.2. Magnitude image statistical mixture model -- 9.4.3. Bayesian decision.
9.4.4. Numerical approach to parameter estimation -- 9.5. Experimental results -- 9.5.1. Dataset description -- 9.5.2. Experimental setup -- 9.5.3. Test 1: Two-class Rayleigh-Rice mixture model -- 9.5.4. Test 2: Multiclass Rician mixture model -- 9.6. Conclusion -- 9.7. References -- List of Authors -- Index -- Summary of Volume 2 -- EULA.
Record Nr. UNINA-9910830500503321
Atto Abdourrahmane M.  
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui