Homogenization of coupled phenomena in heterogenous media [[electronic resource] /] / Jean-Louis Auriault, Claude Boutin, Christian Geindreau |
Autore | Auriault J.-L (Jean-Louis) |
Pubbl/distr/stampa | London, UK, : ISTE |
Descrizione fisica | 1 online resource (478 p.) |
Disciplina |
620.1/1015118
620.11015118 |
Altri autori (Persone) |
BoutinClaude
GeindreauChristian |
Collana | ISTE |
Soggetto topico |
Inhomogeneous materials - Mathematical models
Coupled problems (Complex systems) Homogenization (Differential equations) |
ISBN |
1-282-68632-1
9786612686320 0-470-61203-7 0-470-61044-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Homogenization of Coupled Phenomena in Heterogenous Media; Contents; Main notations; Introduction; Part one. Upscaling Methods; Chapter 1. An Introduction to Upscaling Methods; 1.1. Introduction; 1.2. Heat transfer in a periodic bilaminate composite; 1.2.1. Transfer parallel to the layers; 1.2.2. Transfer perpendicular to the layers; 1.2.3. Comments; 1.2.4. Characteristic macroscopic length; 1.3. Bounds on the effective coefficients; 1.3.1. Theorem of virtual powers; 1.3.2. Minima in the complementary power and potential power; 1.3.3. Hill principle; 1.3.4. Voigt and Reuss bounds
1.3.4.1. Upper bound: Voigt1.3.4.2. Lower bound: Reuss; 1.3.5. Comments; 1.3.6. Hashin and Shtrikman's bounds; 1.3.7. Higher-order bounds; 1.4. Self-consistent method; 1.4.1. Boundary-value problem; 1.4.2. Self-consistent hypothesis; 1.4.3. Self-consistent method with simple inclusions; 1.4.3.1. Determination of βα for a homogenous spherical inclusion; 1.4.3.2. Self-consistent estimate; 1.4.3.3. Implicit morphological constraints; 1.4.4. Comments; Chapter 2. Heterogenous Medium: Is an Equivalent Macroscopic Description Possible?; 2.1. Introduction 2.2. Comments on techniques for micro-macro upscaling2.2.1. Homogenization techniques for separated length scales; 2.2.2. The ideal homogenization method; 2.3. Statistical modeling; 2.4. Method of multiple scale expansions; 2.4.1. Formulation of multiple scale problems; 2.4.1.1. Homogenizability conditions; 2.4.1.2. Double spatial variable; 2.4.1.3. Stationarity, asymptotic expansions; 2.4.2. Methodology; 2.4.3. Parallels between macroscopic models for materials with periodic and random structures; 2.4.3.1. Periodic materials; 2.4.3.2. Random materials with a REV 2.4.4. Hill macro-homogenity and separation of scales2.5. Comments on multiple scale methods and statistical methods; 2.5.1. On the periodicity, the stationarity and the concept of the REV; 2.5.2. On the absence of, or need for macroscopic prerequisites; 2.5.3. On the homogenizability and consistency of the macroscopic description; 2.5.4. On the treatment of problems with several small parameters; Chapter 3. Homogenization by Multiple Scale Asymptotic Expansions; 3.1. Introduction; 3.2. Separation of scales: intuitive approach and experimental visualization 3.2.1. Intuitive approach to the separation of scales3.2.2. Experimental visualization of fields with two length scales; 3.2.2.1. Investigation of a flexible net; 3.2.2.2. Photoelastic investigation of a perforated plate; 3.3. One-dimensional example; 3.3.1. Elasto-statics; 3.3.1.1. Equivalent macroscopic description; 3.3.1.2. Comments; 3.3.2. Elasto-dynamics; 3.3.2.1. Macroscopic dynamics: Pl = O(ε2); 3.3.2.2. Steady state: Pl = O(ε3); 3.3.2.3. Non-homogenizable description: Pl = O(ε); 3.3.3. Comments on the different possible choices for spatial variables 3.4. Expressing problems within the formalism of multiple scales |
Record Nr. | UNINA-9910139470003321 |
Auriault J.-L (Jean-Louis) | ||
London, UK, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Homogenization of coupled phenomena in heterogenous media [[electronic resource] /] / Jean-Louis Auriault, Claude Boutin, Christian Geindreau |
Autore | Auriault J.-L (Jean-Louis) |
Pubbl/distr/stampa | London, UK, : ISTE |
Descrizione fisica | 1 online resource (478 p.) |
Disciplina |
620.1/1015118
620.11015118 |
Altri autori (Persone) |
BoutinClaude
GeindreauChristian |
Collana | ISTE |
Soggetto topico |
Inhomogeneous materials - Mathematical models
Coupled problems (Complex systems) Homogenization (Differential equations) |
ISBN |
1-282-68632-1
9786612686320 0-470-61203-7 0-470-61044-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Homogenization of Coupled Phenomena in Heterogenous Media; Contents; Main notations; Introduction; Part one. Upscaling Methods; Chapter 1. An Introduction to Upscaling Methods; 1.1. Introduction; 1.2. Heat transfer in a periodic bilaminate composite; 1.2.1. Transfer parallel to the layers; 1.2.2. Transfer perpendicular to the layers; 1.2.3. Comments; 1.2.4. Characteristic macroscopic length; 1.3. Bounds on the effective coefficients; 1.3.1. Theorem of virtual powers; 1.3.2. Minima in the complementary power and potential power; 1.3.3. Hill principle; 1.3.4. Voigt and Reuss bounds
1.3.4.1. Upper bound: Voigt1.3.4.2. Lower bound: Reuss; 1.3.5. Comments; 1.3.6. Hashin and Shtrikman's bounds; 1.3.7. Higher-order bounds; 1.4. Self-consistent method; 1.4.1. Boundary-value problem; 1.4.2. Self-consistent hypothesis; 1.4.3. Self-consistent method with simple inclusions; 1.4.3.1. Determination of βα for a homogenous spherical inclusion; 1.4.3.2. Self-consistent estimate; 1.4.3.3. Implicit morphological constraints; 1.4.4. Comments; Chapter 2. Heterogenous Medium: Is an Equivalent Macroscopic Description Possible?; 2.1. Introduction 2.2. Comments on techniques for micro-macro upscaling2.2.1. Homogenization techniques for separated length scales; 2.2.2. The ideal homogenization method; 2.3. Statistical modeling; 2.4. Method of multiple scale expansions; 2.4.1. Formulation of multiple scale problems; 2.4.1.1. Homogenizability conditions; 2.4.1.2. Double spatial variable; 2.4.1.3. Stationarity, asymptotic expansions; 2.4.2. Methodology; 2.4.3. Parallels between macroscopic models for materials with periodic and random structures; 2.4.3.1. Periodic materials; 2.4.3.2. Random materials with a REV 2.4.4. Hill macro-homogenity and separation of scales2.5. Comments on multiple scale methods and statistical methods; 2.5.1. On the periodicity, the stationarity and the concept of the REV; 2.5.2. On the absence of, or need for macroscopic prerequisites; 2.5.3. On the homogenizability and consistency of the macroscopic description; 2.5.4. On the treatment of problems with several small parameters; Chapter 3. Homogenization by Multiple Scale Asymptotic Expansions; 3.1. Introduction; 3.2. Separation of scales: intuitive approach and experimental visualization 3.2.1. Intuitive approach to the separation of scales3.2.2. Experimental visualization of fields with two length scales; 3.2.2.1. Investigation of a flexible net; 3.2.2.2. Photoelastic investigation of a perforated plate; 3.3. One-dimensional example; 3.3.1. Elasto-statics; 3.3.1.1. Equivalent macroscopic description; 3.3.1.2. Comments; 3.3.2. Elasto-dynamics; 3.3.2.1. Macroscopic dynamics: Pl = O(ε2); 3.3.2.2. Steady state: Pl = O(ε3); 3.3.2.3. Non-homogenizable description: Pl = O(ε); 3.3.3. Comments on the different possible choices for spatial variables 3.4. Expressing problems within the formalism of multiple scales |
Record Nr. | UNINA-9910830680803321 |
Auriault J.-L (Jean-Louis) | ||
London, UK, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Homogenization of coupled phenomena in heterogenous media / / Jean-Louis Auriault, Claude Boutin, Christian Geindreau |
Autore | Auriault J.-L (Jean-Louis) |
Pubbl/distr/stampa | London, UK, : ISTE |
Descrizione fisica | 1 online resource (478 p.) |
Disciplina |
620.1/1015118
620.11015118 |
Altri autori (Persone) |
BoutinClaude
GeindreauChristian |
Collana | ISTE |
Soggetto topico |
Inhomogeneous materials - Mathematical models
Coupled problems (Complex systems) Homogenization (Differential equations) |
ISBN |
1-282-68632-1
9786612686320 0-470-61203-7 0-470-61044-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Homogenization of Coupled Phenomena in Heterogenous Media; Contents; Main notations; Introduction; Part one. Upscaling Methods; Chapter 1. An Introduction to Upscaling Methods; 1.1. Introduction; 1.2. Heat transfer in a periodic bilaminate composite; 1.2.1. Transfer parallel to the layers; 1.2.2. Transfer perpendicular to the layers; 1.2.3. Comments; 1.2.4. Characteristic macroscopic length; 1.3. Bounds on the effective coefficients; 1.3.1. Theorem of virtual powers; 1.3.2. Minima in the complementary power and potential power; 1.3.3. Hill principle; 1.3.4. Voigt and Reuss bounds
1.3.4.1. Upper bound: Voigt1.3.4.2. Lower bound: Reuss; 1.3.5. Comments; 1.3.6. Hashin and Shtrikman's bounds; 1.3.7. Higher-order bounds; 1.4. Self-consistent method; 1.4.1. Boundary-value problem; 1.4.2. Self-consistent hypothesis; 1.4.3. Self-consistent method with simple inclusions; 1.4.3.1. Determination of βα for a homogenous spherical inclusion; 1.4.3.2. Self-consistent estimate; 1.4.3.3. Implicit morphological constraints; 1.4.4. Comments; Chapter 2. Heterogenous Medium: Is an Equivalent Macroscopic Description Possible?; 2.1. Introduction 2.2. Comments on techniques for micro-macro upscaling2.2.1. Homogenization techniques for separated length scales; 2.2.2. The ideal homogenization method; 2.3. Statistical modeling; 2.4. Method of multiple scale expansions; 2.4.1. Formulation of multiple scale problems; 2.4.1.1. Homogenizability conditions; 2.4.1.2. Double spatial variable; 2.4.1.3. Stationarity, asymptotic expansions; 2.4.2. Methodology; 2.4.3. Parallels between macroscopic models for materials with periodic and random structures; 2.4.3.1. Periodic materials; 2.4.3.2. Random materials with a REV 2.4.4. Hill macro-homogenity and separation of scales2.5. Comments on multiple scale methods and statistical methods; 2.5.1. On the periodicity, the stationarity and the concept of the REV; 2.5.2. On the absence of, or need for macroscopic prerequisites; 2.5.3. On the homogenizability and consistency of the macroscopic description; 2.5.4. On the treatment of problems with several small parameters; Chapter 3. Homogenization by Multiple Scale Asymptotic Expansions; 3.1. Introduction; 3.2. Separation of scales: intuitive approach and experimental visualization 3.2.1. Intuitive approach to the separation of scales3.2.2. Experimental visualization of fields with two length scales; 3.2.2.1. Investigation of a flexible net; 3.2.2.2. Photoelastic investigation of a perforated plate; 3.3. One-dimensional example; 3.3.1. Elasto-statics; 3.3.1.1. Equivalent macroscopic description; 3.3.1.2. Comments; 3.3.2. Elasto-dynamics; 3.3.2.1. Macroscopic dynamics: Pl = O(ε2); 3.3.2.2. Steady state: Pl = O(ε3); 3.3.2.3. Non-homogenizable description: Pl = O(ε); 3.3.3. Comments on the different possible choices for spatial variables 3.4. Expressing problems within the formalism of multiple scales |
Record Nr. | UNINA-9910877482603321 |
Auriault J.-L (Jean-Louis) | ||
London, UK, : ISTE | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|