top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Information Quality in Information Fusion and Decision Making / / edited by Éloi Bossé, Galina L. Rogova
Information Quality in Information Fusion and Decision Making / / edited by Éloi Bossé, Galina L. Rogova
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (619 pages)
Disciplina 003.54
006.312
Collana Information Fusion and Data Science
Soggetto topico Data mining
Big data
Artificial intelligence
Operations research
Decision making
Computational intelligence
Sociophysics
Econophysics
Data Mining and Knowledge Discovery
Big Data/Analytics
Artificial Intelligence
Operations Research/Decision Theory
Computational Intelligence
Data-driven Science, Modeling and Theory Building
ISBN 3-030-03643-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto PartI: Information Quality: Concepts, Models and Dimensions -- Chapter1: Information Quality in Fusion Driven Human-Machine Environments -- Chapter2: Quality of Information Sources in Information Fusion -- Chapter3: Using Quality Measures in the Intelligent Fusion of Probabilistic Information -- Chapter4: Conflict management in information fusion with belief functions -- Chapter5: Requirements for total uncertainty measures in the theory of evidence.-Chapter6: Uncertainty Characterization and Fusion of Information from Unreliable Sources -- Chapter7: Assessing the usefulness of information in the context of coalition operations -- Chapter8: Fact, Conjecture, Hearsay and Lies: Issues of Uncertainty in Natural Language Communications -- Chapter9: Fake or Fact? Theoretical and Practical Aspects of Fake News -- Chapter10: Information quality and social networks -- Chapter11: Quality, Context, and Information Fusion -- Chapter12: Analyzing Uncertain Tabular Data. Chapter13: Evaluation of information in the context of decision-making -- Chapter14: Evaluating and Improving Data Fusion Accuracy -- PartII: Aspects of Information Quality in various domains of application -- Chapter15: Decision-Aid Methods based on Belief Function Theory with Application to Torrent Protection -- Chapter16: An Epistemological Model for a Data Analysis Process in Support of Verification and Validation -- Chapter17: Data and Information Quality in Remote Sensing -- Chapter18: Reliability-Aware and Robust Multi-Sensor Fusion Towards Ego-Lane Estimation Using Artificial Neural Networks -- Chapter19: Analytics and Quality in Medical Encoding Systems -- Chapter20: Information Quality: The Nexus of Actionable Intelligence -- Chapter21: Ranking Algorithms: Application for Patent Citation Network -- Chapter22: Conflict Measures and Importance Weighting for Information Fusion applied to Industry 4.0 -- Chapter23: Quantify: An Information Fusion Model based on Syntactic and Semantic Analysis and Quality Assessments to Enhance Situation Awareness -- Chapter24: Adaptive fusion.
Record Nr. UNINA-9910739481203321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Possibility Theory for the Design of Information Fusion Systems / / by Basel Solaiman, Éloi Bossé
Possibility Theory for the Design of Information Fusion Systems / / by Basel Solaiman, Éloi Bossé
Autore Solaiman Basel
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (294 pages)
Disciplina 511.322
Collana Information Fusion and Data Science
Soggetto topico Probabilities
Statistics
Mathematical statistics
Sociophysics
Econophysics
Electrical engineering
Probability Theory and Stochastic Processes
Statistics for Engineering, Physics, Computer Science, Chemistry and Earth Sciences
Probability and Statistics in Computer Science
Data-driven Science, Modeling and Theory Building
Communications Engineering, Networks
ISBN 3-030-32853-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chapter1: Introduction to possibility theory -- Chapter2: Fundamental possibilistic concepts -- Chapter3: Joint Possibility Distributions and Conditioning -- Chapter4: Possibilistic Similarity Measures -- Chapter5: The interrelated uncertainty modeling theories -- Chapter6: Possibility integral -- Chapter7: Fusion operators and decision-making criteria in the framework of possibility theory -- Chapter8: Possibilistic concepts applied to soft pattern classification -- Chapter9: The use of possibility theory in the design of information fusion systems.
Record Nr. UNINA-9910739416203321
Solaiman Basel  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui