Optimization in engineering sciences [[electronic resource] ] : exact methods / / Pierre Borne ... [et al.]
| Optimization in engineering sciences [[electronic resource] ] : exact methods / / Pierre Borne ... [et al.] |
| Autore | Borne Pierre |
| Pubbl/distr/stampa | Hoboken, N.J., : ISTE Ltd/John Wiley and Sons Inc., 2013 |
| Descrizione fisica | 1 online resource (328 p.) |
| Disciplina |
519.92
629.89 |
| Altri autori (Persone) | BornePierre |
| Collana | ISTE |
| Soggetto topico |
Engineering mathematics
Mathematical optimization Program transformation (Computer programming) Algorithms Systems engineering |
| ISBN |
1-118-57789-2
1-299-14153-6 1-118-57775-2 1-118-57784-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Contents; Foreword; Preface; List of Acronyms; Chapter 1. Linear Programming; 1.1. Objective of linear programming; 1.2. Stating the problem; 1.3. Lagrange method; 1.4. Simplex algorithm; 1.4.1. Principle; 1.4.2. Simplicial form formulation; 1.4.3. Transition from one simplicial form to another; 1.4.4. Summary of the simplex algorithm; 1.5. Implementation example; 1.6. Linear programming applied to the optimization of resource allocation; 1.6.1. Areas of application; 1.6.2. Resource allocation for advertising; 1.6.3. Optimization of a cut of paper rolls
1.6.4. Structure of linear program of an optimal control problemChapter 2. Nonlinear Programming; 2.1. Problem formulation; 2.2. Karush-Kuhn-Tucker conditions; 2.3. General search algorithm; 2.3.1. Main steps; 2.3.2. Computing the search direction; 2.3.3. Computation of advancement step; 2.4. Monovariable methods; 2.4.1. Coggin's method (of polynomial interpolation); 2.4.2. Golden section method; 2.5. Multivariable methods; 2.5.1. Direct search methods; 2.5.2. Gradient methods; Chapter 3. Dynamic Programming; 3.1. Principle of dynamic programming; 3.1.1. Stating the problem 3.1.2. Decision problem3.2. Recurrence equation of optimality; 3.3. Particular cases; 3.3.1. Infinite horizon stationary problems; 3.3.2. Variable horizon problem; 3.3.3. Random horizon problem; 3.3.4. Taking into account sum-like constraints; 3.3.5. Random evolution law; 3.3.6. Initialization when the final state is imposed; 3.3.7. The case when the necessary information is not always available; 3.4. Examples; 3.4.1. Route optimization; 3.4.2. The smuggler problem; Chapter 4. Hopfield Networks; 4.1. Structure; 4.2. Continuous dynamic Hopfield networks; 4.2.1. General problem 4.2.2. Application to the traveling salesman problem4.3. Optimization by Hopfield networks, based on simulated annealing; 4.3.1. Deterministic method; 4.3.2. Stochastic method; Chapter 5. Optimization in System Identification; 5.1. The optimal identification principle; 5.2. Formulation of optimal identification problems; 5.2.1. General problem; 5.2.2. Formulation based on optimization theory; 5.2.3. Formulation based on estimation theory (statistics); 5.3. Usual identification models; 5.3.1. General model; 5.3.2. Rational input/output (RIO) models 5.3.3. Class of autoregressive models (ARMAX)5.3.4. Class of state space representation models; 5.4. Basic least squares method; 5.4.1. LSM type solution; 5.4.2. Geometric interpretation of the LSM solution; 5.4.3. Consistency of the LSM type solution; 5.4.4. Example of application of the LSM for an ARX model; 5.5. Modified least squares methods; 5.5.1. Recovering lost consistency; 5.5.2. Extended LSM; 5.5.3. Instrumental variables method; 5.6. Minimum prediction error method; 5.6.1. Basic principle and algorithm; 5.6.2. Implementation of the MPEM for ARMAX models 5.6.3. Convergence and consistency of MPEM type estimations |
| Record Nr. | UNINA-9910141493603321 |
Borne Pierre
|
||
| Hoboken, N.J., : ISTE Ltd/John Wiley and Sons Inc., 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Optimization in engineering sciences : exact methods / / Pierre Borne ... [et al.]
| Optimization in engineering sciences : exact methods / / Pierre Borne ... [et al.] |
| Autore | Borne Pierre |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Hoboken, N.J., : ISTE Ltd/John Wiley and Sons Inc., 2013 |
| Descrizione fisica | 1 online resource (328 p.) |
| Disciplina |
519.92
629.89 |
| Altri autori (Persone) | BornePierre |
| Collana | ISTE |
| Soggetto topico |
Engineering mathematics
Mathematical optimization Program transformation (Computer programming) Algorithms Systems engineering |
| ISBN |
9781118577899
1118577892 9781299141537 1299141536 9781118577752 1118577752 9781118577844 1118577841 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Title Page; Contents; Foreword; Preface; List of Acronyms; Chapter 1. Linear Programming; 1.1. Objective of linear programming; 1.2. Stating the problem; 1.3. Lagrange method; 1.4. Simplex algorithm; 1.4.1. Principle; 1.4.2. Simplicial form formulation; 1.4.3. Transition from one simplicial form to another; 1.4.4. Summary of the simplex algorithm; 1.5. Implementation example; 1.6. Linear programming applied to the optimization of resource allocation; 1.6.1. Areas of application; 1.6.2. Resource allocation for advertising; 1.6.3. Optimization of a cut of paper rolls
1.6.4. Structure of linear program of an optimal control problemChapter 2. Nonlinear Programming; 2.1. Problem formulation; 2.2. Karush-Kuhn-Tucker conditions; 2.3. General search algorithm; 2.3.1. Main steps; 2.3.2. Computing the search direction; 2.3.3. Computation of advancement step; 2.4. Monovariable methods; 2.4.1. Coggin's method (of polynomial interpolation); 2.4.2. Golden section method; 2.5. Multivariable methods; 2.5.1. Direct search methods; 2.5.2. Gradient methods; Chapter 3. Dynamic Programming; 3.1. Principle of dynamic programming; 3.1.1. Stating the problem 3.1.2. Decision problem3.2. Recurrence equation of optimality; 3.3. Particular cases; 3.3.1. Infinite horizon stationary problems; 3.3.2. Variable horizon problem; 3.3.3. Random horizon problem; 3.3.4. Taking into account sum-like constraints; 3.3.5. Random evolution law; 3.3.6. Initialization when the final state is imposed; 3.3.7. The case when the necessary information is not always available; 3.4. Examples; 3.4.1. Route optimization; 3.4.2. The smuggler problem; Chapter 4. Hopfield Networks; 4.1. Structure; 4.2. Continuous dynamic Hopfield networks; 4.2.1. General problem 4.2.2. Application to the traveling salesman problem4.3. Optimization by Hopfield networks, based on simulated annealing; 4.3.1. Deterministic method; 4.3.2. Stochastic method; Chapter 5. Optimization in System Identification; 5.1. The optimal identification principle; 5.2. Formulation of optimal identification problems; 5.2.1. General problem; 5.2.2. Formulation based on optimization theory; 5.2.3. Formulation based on estimation theory (statistics); 5.3. Usual identification models; 5.3.1. General model; 5.3.2. Rational input/output (RIO) models 5.3.3. Class of autoregressive models (ARMAX)5.3.4. Class of state space representation models; 5.4. Basic least squares method; 5.4.1. LSM type solution; 5.4.2. Geometric interpretation of the LSM solution; 5.4.3. Consistency of the LSM type solution; 5.4.4. Example of application of the LSM for an ARX model; 5.5. Modified least squares methods; 5.5.1. Recovering lost consistency; 5.5.2. Extended LSM; 5.5.3. Instrumental variables method; 5.6. Minimum prediction error method; 5.6.1. Basic principle and algorithm; 5.6.2. Implementation of the MPEM for ARMAX models 5.6.3. Convergence and consistency of MPEM type estimations |
| Record Nr. | UNINA-9910806124003321 |
Borne Pierre
|
||
| Hoboken, N.J., : ISTE Ltd/John Wiley and Sons Inc., 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||