Cyanobacteria Biotechnology : Sustainability of Water-Energy-Environment Nexus |
Autore | Mehmood Muhammad Aamer |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Cham : , : Springer, , 2025 |
Descrizione fisica | 1 online resource (299 pages) |
Altri autori (Persone) |
MalikSana
MusharrafSyed Ghulam BoopathyRamaraj |
ISBN |
9783031706981
3031706986 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Chapter 1: Emerging Trends in Cyanobacterial Biotechnology for Sustainable Development -- 1.1 Introduction -- 1.2 Atmospheric CO2 Sequestration Using Cyanobacteria -- 1.3 Water Pollution Management by Cyanobacteria -- 1.3.1 Selective Cyanobacteria for Effluents Nutrient Removal -- 1.3.2 Waste Stabilization Pond (WSP) -- 1.3.3 Cyanobacterial Biomass to Biochar -- 1.3.4 Nanomaterials and Fabricated Nanocomposites -- 1.3.5 Immobilized Polymeric Substances -- 1.4 Sustainable Production and Processing Profile -- 1.4.1 Biopolymers -- 1.4.2 Cyanobacterial 3D Bioprinting -- 1.4.3 Cyanobacterial Biomass Pigments -- 1.5 Environmental and Economic Impact -- 1.6 Conclusion and Prospects -- References -- Chapter 2: Algae Species of Industrial, Environmental, and Food Importance -- 2.1 Introduction -- 2.2 Industrially Important Algal Species -- 2.2.1 Skincare Products and Cosmetics Industry -- 2.2.2 Biopolymer Production -- 2.2.3 Agriculture and Animal Feed -- 2.3 Algae Species in Environmental Applications -- 2.3.1 Bioremediation -- 2.3.2 Removal of Dyes from Textile Effluent -- 2.3.3 Microalgal Potential for Ecosystem Recuperation -- 2.3.4 Reclamation of Saline Soils -- 2.3.5 CO2 Sequestration and O2 Enrichment -- 2.4 Use of Cyanobacteria as Functional Foods -- 2.4.1 Natural Food Colors -- 2.4.2 Dietary Supplements and Vitamins -- 2.5 Conclusions and Prospects -- References -- Chapter 3: Cyanobacterial Metabolic Pathways of Industrial Interests -- 3.1 Introduction -- 3.2 Nutrient Uptake Pathway and Their Metabolism -- 3.2.1 Ammonium Uptake Pathways -- 3.2.2 Nitrates and Nitrites Uptake Pathways -- 3.2.3 Urea Absorption Pathway -- 3.2.4 Molecular Nitrogen Absorption Pathways -- 3.2.5 Cyanate Absorption Pathways -- 3.2.6 Phosphorus Uptake Pathways.
3.3 Metabolic Pathways of Cyanobacteria for Biosynthesis of High-Value Bioproducts -- 3.3.1 Hydrogen Biosynthesis Pathway -- 3.3.2 Terpenoid Biosynthesis Pathway -- 3.3.3 Biofuels Biosynthesis Pathways -- 3.4 Economic Layout of Cyanobacteria-Based Products -- 3.5 Conclusion and Prospects -- References -- Chapter 4: Metabolic Pathway Engineering in Cyanobacteria for Biohydrogen Production -- 4.1 Introduction -- 4.2 Molecular Approaches for Cyanobacterial Hydrogen Production -- 4.2.1 Improvement of Hydrogen-Producing Enzymes -- 4.2.2 Improvement of Hydrogenase -- 4.2.3 Improvement of Nitrogenase -- 4.2.4 Overexpression of Enzymes -- 4.3 Genetic Engineering Techniques and Tools -- 4.3.1 CRISPR-Cas9 Technology -- 4.3.2 Plasmid Design and Transformation -- 4.3.3 Selection and Screening Strategies -- 4.4 Metabolic Pathway Engineering Approaches for Improved Hydrogen Production -- 4.4.1 Proteomics Analyses -- 4.4.2 Redirecting the Electrons Toward Hydrogenase Enzymes -- 4.4.3 Carbon Fixation Pathways Optimization -- 4.5 Optimization Strategies -- 4.5.1 Light Intensity and Photobioreactor Design -- 4.5.2 Nutrient Management -- 4.5.3 pH Control and Gas Exchange -- 4.6 Conclusion and Prospects -- References -- Chapter 5: Metabolic Pathway Engineering in Cyanobacteria for Environmental Applications -- 5.1 Introduction -- 5.2 Exploring Cyanobacteria's Molecular Mechanisms for Bioremediation -- 5.2.1 Heavy Metals Sequestration, Chelation, and Detoxification by Cyanobacteria -- 5.2.2 Proteomic Exploration in Cyanobacteria Against Heavy Metals -- 5.2.3 Engineering Cyanobacteria for Metal Bioremediation -- 5.3 Exploring the Role of Cyanobacteria's Exopolysaccharides (EPS) -- 5.3.1 Metabolic Pathways of EPS Production -- 5.3.2 Engineering Cyanobacteria for EPS Production -- 5.3.3 Role of EPS in Bioremediation. 5.4 Exploring the Role of Cyanobacteria for Phosphate Removal -- 5.5 Exploring the Role of Cyanobacteria for Salt Tolerance -- 5.6 Conclusion and Prospects -- References -- Chapter 6: Algae-Derived Food and Feed Products -- 6.1 Introduction -- 6.2 Applications of Algae in Food and Feed Industries -- 6.2.1 Algae as A Nutritional Powerhouse -- 6.2.2 Algae-Based Products for Human Consumption -- 6.2.3 Algae as Animal Feed -- 6.3 Use of Algae in Developing Functional Food Products -- 6.3.1 Microalgae and Cyanobacteria in Bakery Products -- 6.3.2 Beverages and Smoothies -- 6.3.3 Snacks and Functional Bars -- 6.4 Microalgae and Cyanobacteria in Aquaculture Feed -- 6.4.1 Role in Fish Feed -- 6.4.2 Feeding Strategies and Formulations -- 6.4.3 Sustainable Aquaculture Practices -- 6.5 Algae-Based Nutraceuticals -- 6.6 Cyanobacteria-Derived Fish Feed -- 6.7 Innovative Food Products -- 6.8 Conclusion and Prospects -- References -- Chapter 7: Microalgae and Cyanobacteria for Resource Conservation, Recycling, and Preservation -- 7.1 Introduction -- 7.2 Algae in Sustainable Resource Conservation and Management -- 7.2.1 Algae for the Restoration of Degraded Lands/Soil -- 7.2.2 Conservation of Food Crops -- 7.2.3 Algae as an Alternate Resource for Sustainable Energy Production -- 7.3 Nutrient Recycling -- 7.3.1 Recycling of Aquaculture Wastewater -- 7.3.2 Recycling of Dairy Wastewater -- 7.3.3 Recycling of Lipid-Rich Biomass into Bioproducts -- 7.3.4 Recycling of Carbohydrate-Rich Biomass into Bioproducts -- 7.4 Algae-Based Resource Preservation -- 7.4.1 Preservation of Freshwater Bodies -- 7.4.2 Cultivation on Non-arable Land to Preserve the Agricultural Land -- 7.4.3 Preservation of Resources to Protect Ecosystem -- 7.4.4 Carbon Sequestration to Mitigate Climate Change -- 7.5 Conclusion and Prospects -- References. Chapter 8: Cyanobacteria-Based Carbon Capture and Storage -- 8.1 Introduction -- 8.2 CCUS Technologies to Limit CO2 Emission -- 8.2.1 Pre-combustion Capture -- 8.2.2 Post-combustion Capture -- 8.2.3 Adsorption -- 8.2.4 Physical and Chemical Absorption -- 8.2.5 Membrane Separation -- 8.2.6 Cryogenic Distillation -- 8.2.7 Oxyfuel Combustion -- 8.3 Cyanobacteria-Based Carbon Capture -- 8.3.1 Natural Carbon Capture and Utilization (CCU) Technology -- 8.3.2 Bio-Machinery Used to Generate Energy for CO2 Bio-fixation (Light Reaction) -- 8.3.3 CO2 Intake Via HCO3− Transport Systems -- 8.3.4 CO2 Fixation and Concentration -- 8.3.5 Carbon Metabolism in the Light-Independent Reactions of the Calvin Cycle -- 8.4 CO2 Utilization: A Climate Recovery Approach -- 8.5 Factors Affecting the Photosynthetic Efficiency of Cyanobacteria -- 8.6 Conclusion and Prospects -- References -- Chapter 9: Cyanobacterial Biomass as a Feedstock for Biochemicals -- 9.1 Introduction -- 9.2 Cyanobacterial Polysaccharides and Their Applications -- 9.3 Cyanobacteria Proteins and Their Applications -- 9.4 Cyanobacteria Lipids and Their Applications -- 9.5 Cyanobacteria Pigments and Their Applications -- 9.5.1 Photosynthetic Pigment -- 9.5.2 Secondary Pigments -- 9.5.3 Phycobilins -- 9.6 Cyanobacterial Vitamins and Their Applications -- 9.7 Conclusions and Prospects -- References -- Chapter 10: Bioprocessing of the Wastewater-Grown Cyanobacterial Biomass to Non-food Bioproducts -- 10.1 Introduction -- 10.2 Cyanobacterial Metabolites -- 10.2.1 Phenolic Acids -- 10.2.2 Vitamins -- 10.2.3 Peptides -- 10.2.4 Terpenoids -- 10.3 Cyanobacteria-Based Agricultural Products -- 10.3.1 Nitrogen Fixation -- 10.3.2 Soil Conditioner -- 10.3.3 Biofertilizers -- 10.4 Cyanobacteria-Based Industrial Products -- 10.4.1 Bioflocculants -- 10.4.2 Biopolymers -- 10.4.3 Colouring Agents. 10.5 Cyanobacteria-Based Biofuels -- 10.5.1 Biodiesel -- 10.5.2 Bioethanol -- 10.5.3 Biobutanol and Biohydrogen -- 10.6 Conclusion and Prospects -- References -- Chapter 11: Bioprocessing of the Wastewater-Grown Cyanobacterial Biomass to Biofertilizers -- 11.1 Introduction -- 11.2 Influence of Different Wastewaters on the Biochemical Composition of Biomass -- 11.2.1 Scenedesmus sp. -- 11.2.2 Spirulina sp. -- 11.2.3 Chlorella sp. -- 11.2.4 Haematococcus sp. -- 11.3 Revolutionizing Agriculture with Cyanobacteria -- 11.3.1 Conventional Versus Algal Biofertilizers -- 11.4 Impact of Cyanobacterial Extracts on Crop Production -- 11.4.1 Effect of Cyanobacterial Biomass on Microbial Community of the Soil -- 11.4.2 Soil Reclamation and Biocrust Formation -- 11.4.3 Nitrogen Fixation -- 11.4.4 Crop Protection -- 11.4.5 Enhancing Nutrient Availability and Plant Productivity -- 11.5 Conclusion and Prospects -- References -- Chapter 12: Cyanobacteria for the Global Space Biology Program: Challenges and Opportunities -- 12.1 Introduction -- 12.2 Implications of Cyanobacteria and Microalgae in Deep-Space Missions -- 12.3 Prospects and Challenges -- 12.3.1 Deep-Space Missions -- 12.3.2 Influence of High CO2 Concentration and Low Atmospheric Pressure -- 12.3.3 Impact of Microgravity -- 12.3.4 Impact of Cosmic Ionizing Radiations -- 12.3.5 Synergistic Effect of Stresses on Cyanobacteria and Microalgae -- 12.4 Discussion -- 12.5 Conclusion and Prospects -- References. |
Record Nr. | UNINA-9910917784403321 |
Mehmood Muhammad Aamer | ||
Cham : , : Springer, , 2025 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Sustainable Aquaculture / / edited by Faisal I. Hai, Chettiyappan Visvanathan, Ramaraj Boopathy |
Edizione | [1st ed. 2018.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 |
Descrizione fisica | 1 online resource (332 pages) : illustrations |
Disciplina | 639.8 |
Collana | Applied Environmental Science and Engineering for a Sustainable Future |
Soggetto topico |
Water pollution
Aquatic ecology Marine sciences Freshwater Biotechnology Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution Freshwater & Marine Ecology Marine & Freshwater Sciences |
ISBN | 3-319-73257-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Aquaculture and the Environment: Towards sustainability -- 2. Sustainable Aquaculture: Socio-Economic and Environmental Assessment -- 3. Sustainable Fishing Methods in Asia Pacific Region -- 4.Sustainable Aquafeed -- 5. Sustainable production of shrimp in Thailand -- 6. Aquaponics: A commercial niche for sustainable modern aquaculture -- 7. Aquaponics Production and Practices - a System Perspective -- 8. Estimating Carbon Footprint under an intensive aquaculture regime -- 9. Impact of Pharmaceutically Active Compounds in Marine Environment on aquaculture - 10. Waste Treatment in Recirculating Shrimp Culture Systems. |
Record Nr. | UNINA-9910299372603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2018 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Valorisation of Agro-industrial Residues – Volume I: Biological Approaches / / edited by Zainul Akmar Zakaria, Ramaraj Boopathy, Julian Rafael Dib |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 |
Descrizione fisica | 1 online resource (XI, 308 p. 33 illus., 18 illus. in color.) |
Disciplina | 628.746 |
Collana | Applied Environmental Science and Engineering for a Sustainable Future |
Soggetto topico |
Agriculture
Environmental engineering Biotechnology Waste management Water - Pollution Environmental Engineering/Biotechnology Waste Management/Waste Technology Waste Water Technology / Water Pollution Control / Water Management / Aquatic Pollution |
ISBN | 3-030-39137-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1: Dark fermentation and bioelectrochemical systems for enhanced biohydrogen production from palm oil mill effluent: current progress, potentials, and future perspectives -- Chapter 2: Spent mushroom substrate as biofertilizer for agriculture application -- Chapter 3: Biological treatment of agro-industrial waste -- Chapter 4: Proteomics of lignocellulose substrates bioconversion in anaerobic digesters to increase carbon recovery as methane -- Chapter 5: Circular economy and agroindustrial wastewater: potential of microalgae in bioremediation processes -- Chapter 6: Utilization of agro-waste as carbon source for biohydrogen production: prospect and challenges in Malaysia -- Chapter 7: Agro-industrial waste as substrates for the production of bacterial pigment -- Chapter 8: Analysis of termite microbiome and biodegradation of various phenolic compounds by a bacterium isolated from the termite gut in louisiana, usa -- Chapter 9: Compatible technologies to anaerobic digestion for the integral valorization of organic waste -- Chapter 10: Recycling and reuse of ayurvedic pharma industry wastes -- Chapter 11: Production of unicellular biomass as a food ingredient from agro-industrial waste -- Chapter 12: Cyanobacterial degradation of organophosphorus pesticides -- Chapter 13: Microbial identification and extracellular polymeric substances characterization of aerobic granules developed in treating rubber processing waste water -- Chapter 14: Granulation and biodegradation by microbial species in granular sequencing batch reactor for soy-sauce wastewater treatment. |
Record Nr. | UNINA-9910383811603321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|