Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante |
Autore | Benedetti R. |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (181 p.) |
Disciplina | 514.3 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Three-manifolds (Topology)
Global differential geometry Low-dimensional topology |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0532-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""2.1. Generalities on (X,G)-structures""""2.2. Minkowski space""; ""2.3. De Sitter space""; ""2.4. Anti de Sitter space""; ""2.5. Complex projective structures on surfaces""; ""Chapter 3. Flat globally hyperbolic spacetimes""; ""3.1. Globally hyperbolic spacetimes""; ""3.2. Cosmological time""; ""3.3. Regular domains""; ""3.4. Measured geodesic laminations on straight convex sets""; ""3.5. From measured geodesic laminations towards regular domains""; ""3.6. From regular domains towards measured geodesic laminations""; ""3.7. Initial singularities and R-trees""
""3.8. Equivariant constructions""""Chapter 4. Flat Lorentzian vs hyperbolic geometry""; ""4.1. Hyperbolic bending cocycles""; ""4.2. The Wick rotation""; ""4.3. On the geometry of M[sub(λ)]""; ""4.4. Equivariant theory""; ""Chapter 5. Flat vs de Sitter Lorentzian geometry""; ""5.1. Standard de Sitter spacetimes""; ""5.2. The rescaling""; ""5.3. Equivariant theory""; ""Chapter 6. Flat vs AdS Lorentzian geometry""; ""6.1. Bending in AdS space""; ""6.2. Canonical AdS rescaling""; ""6.3. Maximal globally hyperbolic AdS spacetimes""; ""6.4. Classification via AdS rescaling"" ""6.5. Equivariant rescaling""""6.6. AdS rescaling and generalized earthquakes""; ""6.7. T-symmetry""; ""6.8. Examples""; ""Chapter 7. QD-spacetimes""; ""7.1. Quadratic differentials""; ""7.2. Flat QD-spacetimes""; ""7.3. QD Wick rotation-rescaling theory""; ""Chapter 8. Complements""; ""8.1. Moving along a ray of laminations""; ""8.2. More compact Cauchy surfaces""; ""8.3. Including particles""; ""8.4. Open questions""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" |
Record Nr. | UNINA-9910480615903321 |
Benedetti R. | ||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante |
Autore | Benedetti R. |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (181 p.) |
Disciplina | 514.3 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Three-manifolds (Topology)
Global differential geometry Low-dimensional topology |
ISBN | 1-4704-0532-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""2.1. Generalities on (X,G)-structures""""2.2. Minkowski space""; ""2.3. De Sitter space""; ""2.4. Anti de Sitter space""; ""2.5. Complex projective structures on surfaces""; ""Chapter 3. Flat globally hyperbolic spacetimes""; ""3.1. Globally hyperbolic spacetimes""; ""3.2. Cosmological time""; ""3.3. Regular domains""; ""3.4. Measured geodesic laminations on straight convex sets""; ""3.5. From measured geodesic laminations towards regular domains""; ""3.6. From regular domains towards measured geodesic laminations""; ""3.7. Initial singularities and R-trees""
""3.8. Equivariant constructions""""Chapter 4. Flat Lorentzian vs hyperbolic geometry""; ""4.1. Hyperbolic bending cocycles""; ""4.2. The Wick rotation""; ""4.3. On the geometry of M[sub(λ)]""; ""4.4. Equivariant theory""; ""Chapter 5. Flat vs de Sitter Lorentzian geometry""; ""5.1. Standard de Sitter spacetimes""; ""5.2. The rescaling""; ""5.3. Equivariant theory""; ""Chapter 6. Flat vs AdS Lorentzian geometry""; ""6.1. Bending in AdS space""; ""6.2. Canonical AdS rescaling""; ""6.3. Maximal globally hyperbolic AdS spacetimes""; ""6.4. Classification via AdS rescaling"" ""6.5. Equivariant rescaling""""6.6. AdS rescaling and generalized earthquakes""; ""6.7. T-symmetry""; ""6.8. Examples""; ""Chapter 7. QD-spacetimes""; ""7.1. Quadratic differentials""; ""7.2. Flat QD-spacetimes""; ""7.3. QD Wick rotation-rescaling theory""; ""Chapter 8. Complements""; ""8.1. Moving along a ray of laminations""; ""8.2. More compact Cauchy surfaces""; ""8.3. Including particles""; ""8.4. Open questions""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" |
Record Nr. | UNINA-9910788854103321 |
Benedetti R. | ||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante |
Autore | Benedetti R. |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
Descrizione fisica | 1 online resource (181 p.) |
Disciplina | 514.3 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Three-manifolds (Topology)
Global differential geometry Low-dimensional topology |
ISBN | 1-4704-0532-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""2.1. Generalities on (X,G)-structures""""2.2. Minkowski space""; ""2.3. De Sitter space""; ""2.4. Anti de Sitter space""; ""2.5. Complex projective structures on surfaces""; ""Chapter 3. Flat globally hyperbolic spacetimes""; ""3.1. Globally hyperbolic spacetimes""; ""3.2. Cosmological time""; ""3.3. Regular domains""; ""3.4. Measured geodesic laminations on straight convex sets""; ""3.5. From measured geodesic laminations towards regular domains""; ""3.6. From regular domains towards measured geodesic laminations""; ""3.7. Initial singularities and R-trees""
""3.8. Equivariant constructions""""Chapter 4. Flat Lorentzian vs hyperbolic geometry""; ""4.1. Hyperbolic bending cocycles""; ""4.2. The Wick rotation""; ""4.3. On the geometry of M[sub(λ)]""; ""4.4. Equivariant theory""; ""Chapter 5. Flat vs de Sitter Lorentzian geometry""; ""5.1. Standard de Sitter spacetimes""; ""5.2. The rescaling""; ""5.3. Equivariant theory""; ""Chapter 6. Flat vs AdS Lorentzian geometry""; ""6.1. Bending in AdS space""; ""6.2. Canonical AdS rescaling""; ""6.3. Maximal globally hyperbolic AdS spacetimes""; ""6.4. Classification via AdS rescaling"" ""6.5. Equivariant rescaling""""6.6. AdS rescaling and generalized earthquakes""; ""6.7. T-symmetry""; ""6.8. Examples""; ""Chapter 7. QD-spacetimes""; ""7.1. Quadratic differentials""; ""7.2. Flat QD-spacetimes""; ""7.3. QD Wick rotation-rescaling theory""; ""Chapter 8. Complements""; ""8.1. Moving along a ray of laminations""; ""8.2. More compact Cauchy surfaces""; ""8.3. Including particles""; ""8.4. Open questions""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" |
Record Nr. | UNINA-9910829176403321 |
Benedetti R. | ||
Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|