Nonlinear wave methods for charge transport [[electronic resource] /] / Luis L. Bonilla and Stephen W. Teitsworth |
Autore | Bonilla L. L (Luis López), <1956-> |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH Verlag GmbH, c2010 |
Descrizione fisica | 1 online resource (290 p.) |
Disciplina | 530.15 |
Altri autori (Persone) | TeitsworthStephen Winthrop |
Soggetto topico |
Nonlinear theories
Charge transfer |
ISBN |
1-282-47228-3
9786612472282 3-527-62867-3 3-527-62868-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nonlinear Wave Methods for Charge Transport; Contents; Preface; Acknowledgments; 1 Introduction; 1.1 Overview of Nonlinear Wave Phenomena; 1.2 Nonlinear Waves and Electronic Transport in Materials; 1.3 Structural Outline of the Book; 2 Dynamical Systems, Bifurcations, and the Chapman-Enskog Method; 2.1 Introduction; 2.2 Review of Dynamical Systems Concepts; 2.2.1 Attractors; 2.2.2 Bifurcations - Basic Definitions and Types; 2.3 Analysis of the Hopf Bifurcation:An Introduction to the Chapman--Enskog Method; 2.3.1 Multiple Scales and Chapman-Enskog Methods
2.3.2 General Formulation of the Hopf Problem Using CEM2.3.3 Utility of the CEM for Higher Order Bifurcations; 3 Excitable Media I: Continuum Systems; 3.1 Introduction; 3.2 Basic Excitability - the FitzHugh-Nagumo System; 3.3 Matched Asymptotics: Excitability and Oscillations; 3.4 The Scalar Bistable Equation; Wave Pulses as Heteroclinic Connections; 3.4.1 Wave Fronts Near w=w0 and a Formula for dc/dw; 3.4.2 Wave Fronts for a Cubic Source; 3.4.3 Linear Stability of the Wave Fronts; 3.5 Traveling Waves of the FitzHugh-Nagumo System; 3.5.1 Wave Fronts; 3.5.2 Pulses of the FHN System 3.5.3 Wave Trains4 Excitable Media II: Discrete Systems; 4.1 Introduction; 4.2 The Spatially Discrete Nagumo Equation; 4.2.1 Depinning Transition of Wave Fronts; 4.2.2 Construction of the Wave Front Profile Near the Depinning Transition; 4.2.3 Wave Front Velocity Far from the Depinning Transition; 4.3 Asymptotic Construction of Pulses; 4.4 Numerically Calculated Pulses; 4.5 Propagation Failure; 4.6 Pulse Generation at a Boundary; 4.7 Concluding Remarks; 5 Electronic Transport in Condensed Matter:From Quantum Kinetics to Drift-diffusion Models; 5.1 Introduction 5.1.1 Wigner Function for Non-interacting Particles in an External Potential5.1.2 Classical Limit; 5.1.3 Boltzmann Transport Equation and BGK Collision Model; 5.1.4 Parabolic Scaling; 5.1.5 Derivation of a Drift-Diffusion Equation; 5.2 Superlattices; 5.2.1 Kinetic Theory Description of a Superlatticewith a Single Populated Miniband; 5.2.2 Derivation of Reduced Equations for n and F; 5.3 Concluding Remarks; 6 Electric Field Domains in Bulk Semiconductors I: the Gunn Effect; 6.1 Introduction; 6.2 N-shaped Current-Field Characteristics and Kroemer's Model; 6.2.1 Intervalley Transfer Mechanism 6.2.2 Kroemer's Drift-Diffusion Model6.2.3 Boundary Conditions; 6.2.4 Nondimensionalization; 6.3 Stationary Solutions and Their Linear Stability in the Limit L1; 6.3.1 Stationary States and Their Linear Stability under Current Bias; 6.3.2 Construction of the Stationary Solutionand of (J) under Voltage Bias; 6.3.3 Linear Stability of the Stationary Solution under Voltage Bias; 6.4 Onset of the Gunn Effect; 6.4.1 The Linear Inhomogeneous Problem and Secular Terms; 6.4.2 Hopf Bifurcation; 6.4.3 Amplitude Equation for lnL1 6.5 Asymptotics of the Gunn Effect for Long Samplesand N-shaped Electron Velocity |
Record Nr. | UNINA-9910139536403321 |
Bonilla L. L (Luis López), <1956-> | ||
Weinheim, : Wiley-VCH Verlag GmbH, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear wave methods for charge transport [[electronic resource] /] / Luis L. Bonilla and Stephen W. Teitsworth |
Autore | Bonilla L. L (Luis López), <1956-> |
Pubbl/distr/stampa | Weinheim, : Wiley-VCH Verlag GmbH, c2010 |
Descrizione fisica | 1 online resource (290 p.) |
Disciplina | 530.15 |
Altri autori (Persone) | TeitsworthStephen Winthrop |
Soggetto topico |
Nonlinear theories
Charge transfer |
ISBN |
1-282-47228-3
9786612472282 3-527-62867-3 3-527-62868-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Nonlinear Wave Methods for Charge Transport; Contents; Preface; Acknowledgments; 1 Introduction; 1.1 Overview of Nonlinear Wave Phenomena; 1.2 Nonlinear Waves and Electronic Transport in Materials; 1.3 Structural Outline of the Book; 2 Dynamical Systems, Bifurcations, and the Chapman-Enskog Method; 2.1 Introduction; 2.2 Review of Dynamical Systems Concepts; 2.2.1 Attractors; 2.2.2 Bifurcations - Basic Definitions and Types; 2.3 Analysis of the Hopf Bifurcation:An Introduction to the Chapman--Enskog Method; 2.3.1 Multiple Scales and Chapman-Enskog Methods
2.3.2 General Formulation of the Hopf Problem Using CEM2.3.3 Utility of the CEM for Higher Order Bifurcations; 3 Excitable Media I: Continuum Systems; 3.1 Introduction; 3.2 Basic Excitability - the FitzHugh-Nagumo System; 3.3 Matched Asymptotics: Excitability and Oscillations; 3.4 The Scalar Bistable Equation; Wave Pulses as Heteroclinic Connections; 3.4.1 Wave Fronts Near w=w0 and a Formula for dc/dw; 3.4.2 Wave Fronts for a Cubic Source; 3.4.3 Linear Stability of the Wave Fronts; 3.5 Traveling Waves of the FitzHugh-Nagumo System; 3.5.1 Wave Fronts; 3.5.2 Pulses of the FHN System 3.5.3 Wave Trains4 Excitable Media II: Discrete Systems; 4.1 Introduction; 4.2 The Spatially Discrete Nagumo Equation; 4.2.1 Depinning Transition of Wave Fronts; 4.2.2 Construction of the Wave Front Profile Near the Depinning Transition; 4.2.3 Wave Front Velocity Far from the Depinning Transition; 4.3 Asymptotic Construction of Pulses; 4.4 Numerically Calculated Pulses; 4.5 Propagation Failure; 4.6 Pulse Generation at a Boundary; 4.7 Concluding Remarks; 5 Electronic Transport in Condensed Matter:From Quantum Kinetics to Drift-diffusion Models; 5.1 Introduction 5.1.1 Wigner Function for Non-interacting Particles in an External Potential5.1.2 Classical Limit; 5.1.3 Boltzmann Transport Equation and BGK Collision Model; 5.1.4 Parabolic Scaling; 5.1.5 Derivation of a Drift-Diffusion Equation; 5.2 Superlattices; 5.2.1 Kinetic Theory Description of a Superlatticewith a Single Populated Miniband; 5.2.2 Derivation of Reduced Equations for n and F; 5.3 Concluding Remarks; 6 Electric Field Domains in Bulk Semiconductors I: the Gunn Effect; 6.1 Introduction; 6.2 N-shaped Current-Field Characteristics and Kroemer's Model; 6.2.1 Intervalley Transfer Mechanism 6.2.2 Kroemer's Drift-Diffusion Model6.2.3 Boundary Conditions; 6.2.4 Nondimensionalization; 6.3 Stationary Solutions and Their Linear Stability in the Limit L1; 6.3.1 Stationary States and Their Linear Stability under Current Bias; 6.3.2 Construction of the Stationary Solutionand of (J) under Voltage Bias; 6.3.3 Linear Stability of the Stationary Solution under Voltage Bias; 6.4 Onset of the Gunn Effect; 6.4.1 The Linear Inhomogeneous Problem and Secular Terms; 6.4.2 Hopf Bifurcation; 6.4.3 Amplitude Equation for lnL1 6.5 Asymptotics of the Gunn Effect for Long Samplesand N-shaped Electron Velocity |
Record Nr. | UNINA-9910830701803321 |
Bonilla L. L (Luis López), <1956-> | ||
Weinheim, : Wiley-VCH Verlag GmbH, c2010 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|