A geometric setting for Hamiltonian perturbation theory / / Anthony D. Blaom |
Autore | Blaom Anthony D. <1968-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2001] |
Descrizione fisica | 1 online resource (137 p.) |
Disciplina |
510 s
515/.35 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Perturbation (Mathematics)
Hamiltonian systems |
Soggetto genere / forma | Electronic books. |
ISBN | 1-4704-0320-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Notation""; ""Overture""; ""Introduction""; ""Part 1. Dynamics""; ""Chapter 1. Lie-Theoretic Preliminaries""; ""Chapter 2. Action-Group Coordinates""; ""Chapter 3. On the Existence of Action-Group Coordinates""; ""Chapter 4. Naive Averaging""; ""Chapter 5. An Abstract Formulation of Nekhoroshev's Theorem""; ""Chapter 6. Applying the Abstract Nekhoroshev Theorem to Action-Group Coordinates""; ""Chapter 7. Nekhoroshev-Type Estimates for Momentum Maps""; ""Part 2. Geometry""; ""Chapter 8. On Hamiltonian G-Spaces with Regular Momenta""
""Chapter 9. Action-Group Coordinates as a Symplectic Cross-Section""""Chapter 10. Constructing Action-Group Coordinates""; ""Chapter 11. The Axisymmetric Euler-Poinsot Rigid Body""; ""Chapter 12. Passing from Dynamic Integrability to Geometric Integrability""; ""Chapter 13. Concluding Remarks""; ""Appendix A. Proof of the Nekhoroshev-Lochak Theorem""; ""Appendix B. Proof that W is a Slice""; ""Appendix C. Proof of the Extension Lemma""; ""Appendix D. An Application of Converting Dynamic Integrabilityinto Geometric Integrability: The Euler-Poinsot Rigid Body Revisited"" ""Appendix E. Dual Pairs, Leaf Correspondence, and Symplectic Reduction""""Bibliography"" |
Record Nr. | UNINA-9910480521303321 |
Blaom Anthony D. <1968->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2001] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
A geometric setting for Hamiltonian perturbation theory / / Anthony D. Blaom |
Autore | Blaom Anthony D. <1968-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2001] |
Descrizione fisica | 1 online resource (137 p.) |
Disciplina |
510 s
515/.35 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Perturbation (Mathematics)
Hamiltonian systems |
ISBN | 1-4704-0320-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Notation""; ""Overture""; ""Introduction""; ""Part 1. Dynamics""; ""Chapter 1. Lie-Theoretic Preliminaries""; ""Chapter 2. Action-Group Coordinates""; ""Chapter 3. On the Existence of Action-Group Coordinates""; ""Chapter 4. Naive Averaging""; ""Chapter 5. An Abstract Formulation of Nekhoroshev's Theorem""; ""Chapter 6. Applying the Abstract Nekhoroshev Theorem to Action-Group Coordinates""; ""Chapter 7. Nekhoroshev-Type Estimates for Momentum Maps""; ""Part 2. Geometry""; ""Chapter 8. On Hamiltonian G-Spaces with Regular Momenta""
""Chapter 9. Action-Group Coordinates as a Symplectic Cross-Section""""Chapter 10. Constructing Action-Group Coordinates""; ""Chapter 11. The Axisymmetric Euler-Poinsot Rigid Body""; ""Chapter 12. Passing from Dynamic Integrability to Geometric Integrability""; ""Chapter 13. Concluding Remarks""; ""Appendix A. Proof of the Nekhoroshev-Lochak Theorem""; ""Appendix B. Proof that W is a Slice""; ""Appendix C. Proof of the Extension Lemma""; ""Appendix D. An Application of Converting Dynamic Integrabilityinto Geometric Integrability: The Euler-Poinsot Rigid Body Revisited"" ""Appendix E. Dual Pairs, Leaf Correspondence, and Symplectic Reduction""""Bibliography"" |
Record Nr. | UNINA-9910788844203321 |
Blaom Anthony D. <1968->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2001] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|
A geometric setting for Hamiltonian perturbation theory / / Anthony D. Blaom |
Autore | Blaom Anthony D. <1968-> |
Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , [2001] |
Descrizione fisica | 1 online resource (137 p.) |
Disciplina |
510 s
515/.35 |
Collana | Memoirs of the American Mathematical Society |
Soggetto topico |
Perturbation (Mathematics)
Hamiltonian systems |
ISBN | 1-4704-0320-X |
Formato | Materiale a stampa ![]() |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
""Contents""; ""Abstract""; ""Notation""; ""Overture""; ""Introduction""; ""Part 1. Dynamics""; ""Chapter 1. Lie-Theoretic Preliminaries""; ""Chapter 2. Action-Group Coordinates""; ""Chapter 3. On the Existence of Action-Group Coordinates""; ""Chapter 4. Naive Averaging""; ""Chapter 5. An Abstract Formulation of Nekhoroshev's Theorem""; ""Chapter 6. Applying the Abstract Nekhoroshev Theorem to Action-Group Coordinates""; ""Chapter 7. Nekhoroshev-Type Estimates for Momentum Maps""; ""Part 2. Geometry""; ""Chapter 8. On Hamiltonian G-Spaces with Regular Momenta""
""Chapter 9. Action-Group Coordinates as a Symplectic Cross-Section""""Chapter 10. Constructing Action-Group Coordinates""; ""Chapter 11. The Axisymmetric Euler-Poinsot Rigid Body""; ""Chapter 12. Passing from Dynamic Integrability to Geometric Integrability""; ""Chapter 13. Concluding Remarks""; ""Appendix A. Proof of the Nekhoroshev-Lochak Theorem""; ""Appendix B. Proof that W is a Slice""; ""Appendix C. Proof of the Extension Lemma""; ""Appendix D. An Application of Converting Dynamic Integrabilityinto Geometric Integrability: The Euler-Poinsot Rigid Body Revisited"" ""Appendix E. Dual Pairs, Leaf Correspondence, and Symplectic Reduction""""Bibliography"" |
Record Nr. | UNINA-9910818134203321 |
Blaom Anthony D. <1968->
![]() |
||
Providence, Rhode Island : , : American Mathematical Society, , [2001] | ||
![]() | ||
Lo trovi qui: Univ. Federico II | ||
|