Nonlinear dynamical systems of mathematical physics [[electronic resource] ] : spectral and symplectic integrability analysis / / Denis Blackmore, Anatoliy K. Prykarpatsky, Valeriy Hr. Samoylenko |
Autore | Blackmore Denis L |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2011 |
Descrizione fisica | 1 online resource (563 p.) |
Disciplina | 530.15/539 |
Altri autori (Persone) |
PrikarpatskiĭA. K (Anatoliĭ Karolevich)
SamoylenkoValeriy Hr |
Soggetto topico |
Differentiable dynamical systems
Nonlinear theories Symplectic geometry Spectrum analysis - Mathematics |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-23479-3
9786613234797 981-4327-16-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Chapter 1 General Properties of Nonlinear Dynamical Systems; 1.1 Finite-dimensional dynamical systems; 1.1.1 Invariant measure; 1.1.2 The Liouville condition; 1.1.3 The Poincaré theorem; 1.1.4 The Birkhoff-Khinchin theorem; 1.1.5 The Birkhoff-Khinchin theorem for discrete dynamical systems; 1.2 Poissonian and symplectic structures on manifolds; 1.2.1 Poisson brackets; 1.2.2 The Liouville theorem and Hamilton-Jacobi method; 1.2.3 Dirac reduction: Symplectic and Poissonian structures on submanifolds
Chapter 2 Geometric and Algebraic Properties of Nonlinear Dynamical Systems with Symmetry: Theory and Applications2.1 The Poisson structures and Lie group actions on manifolds: Introduction; 2.2 Lie group actions on Poisson manifolds and the orbit structure; 2.3 The canonical reduction method on symplectic spaces and related geometric structures on principal fiber bundles; 2.4 The form of reduced symplectic structures on cotangent spaces to Lie group manifolds and associated canonical connections 2.5 The geometric structure of abelian Yang-Mills type gauge field equations via the reduction method2.6 The geometric structure of non-abelian Yang-Mills gauge field equations via the reduction method; 2.7 Classical and quantum integrability; 2.7.1 The quantization scheme, observables and Poisson manifolds; 2.7.2 The Hopf and quantum algebras; 2.7.3 Integrable flows related to Hopf algebras and their Poissonian representations; 2.7.4 Casimir elements and their special properties; 2.7.5 Poisson co-algebras and their realizations 2.7.6 Casimir elements and the Heisenberg-Weil algebra related structures2.7.7 The Heisenberg-Weil co-algebra structure and related integrable flows; Chapter 3 Integrability by Quadratures of Hamiltonian and Picard-Fuchs Equations: Modern Differential-Geometric Aspects; 3.1 Introduction; 3.2 Preliminaries; 3.3 Integral submanifold embedding problem for an abelian Lie algebra of invariants; 3.4 Integral submanifold embedding problem for a nonabelian Lie algebra of invariants; 3.5 Examples; 3.6 Existence problem for a global set of invariants; 3.7 Additional examples 3.7.1 The Henon-Heiles system3.7.2 A truncated four-dimensional Fokker-Planck Hamiltonian system; Chapter 4 Infinite-dimensional Dynamical Systems; 4.1 Preliminary remarks; 4.2 Implectic operators and dynamical systems; 4.3 Symmetry properties and recursion operators; 4.4 Bäcklund transformations; 4.5 Properties of solutions of some infinite sequences of dynamical systems; 4.6 Integro-differential systems; Chapter 5 Integrability Criteria for Dynamical Systems: the Gradient-Holonomic Algorithm; 5.1 The Lax representation; 5.1.1 Generalized eigenvalue problem 5.1.2 Properties of the spectral problem |
Record Nr. | UNINA-9910464496603321 |
Blackmore Denis L | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear dynamical systems of mathematical physics [[electronic resource] ] : spectral and symplectic integrability analysis / / Denis Blackmore, Anatoliy K. Prykarpatsky, Valeriy Hr. Samoylenko |
Autore | Blackmore Denis L |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2011 |
Descrizione fisica | 1 online resource (563 p.) |
Disciplina | 530.15/539 |
Altri autori (Persone) |
PrikarpatskiĭA. K (Anatoliĭ Karolevich)
SamoylenkoValeriy Hr |
Soggetto topico |
Differentiable dynamical systems
Nonlinear theories Symplectic geometry Spectrum analysis - Mathematics |
ISBN |
1-283-23479-3
9786613234797 981-4327-16-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Chapter 1 General Properties of Nonlinear Dynamical Systems; 1.1 Finite-dimensional dynamical systems; 1.1.1 Invariant measure; 1.1.2 The Liouville condition; 1.1.3 The Poincaré theorem; 1.1.4 The Birkhoff-Khinchin theorem; 1.1.5 The Birkhoff-Khinchin theorem for discrete dynamical systems; 1.2 Poissonian and symplectic structures on manifolds; 1.2.1 Poisson brackets; 1.2.2 The Liouville theorem and Hamilton-Jacobi method; 1.2.3 Dirac reduction: Symplectic and Poissonian structures on submanifolds
Chapter 2 Geometric and Algebraic Properties of Nonlinear Dynamical Systems with Symmetry: Theory and Applications2.1 The Poisson structures and Lie group actions on manifolds: Introduction; 2.2 Lie group actions on Poisson manifolds and the orbit structure; 2.3 The canonical reduction method on symplectic spaces and related geometric structures on principal fiber bundles; 2.4 The form of reduced symplectic structures on cotangent spaces to Lie group manifolds and associated canonical connections 2.5 The geometric structure of abelian Yang-Mills type gauge field equations via the reduction method2.6 The geometric structure of non-abelian Yang-Mills gauge field equations via the reduction method; 2.7 Classical and quantum integrability; 2.7.1 The quantization scheme, observables and Poisson manifolds; 2.7.2 The Hopf and quantum algebras; 2.7.3 Integrable flows related to Hopf algebras and their Poissonian representations; 2.7.4 Casimir elements and their special properties; 2.7.5 Poisson co-algebras and their realizations 2.7.6 Casimir elements and the Heisenberg-Weil algebra related structures2.7.7 The Heisenberg-Weil co-algebra structure and related integrable flows; Chapter 3 Integrability by Quadratures of Hamiltonian and Picard-Fuchs Equations: Modern Differential-Geometric Aspects; 3.1 Introduction; 3.2 Preliminaries; 3.3 Integral submanifold embedding problem for an abelian Lie algebra of invariants; 3.4 Integral submanifold embedding problem for a nonabelian Lie algebra of invariants; 3.5 Examples; 3.6 Existence problem for a global set of invariants; 3.7 Additional examples 3.7.1 The Henon-Heiles system3.7.2 A truncated four-dimensional Fokker-Planck Hamiltonian system; Chapter 4 Infinite-dimensional Dynamical Systems; 4.1 Preliminary remarks; 4.2 Implectic operators and dynamical systems; 4.3 Symmetry properties and recursion operators; 4.4 Bäcklund transformations; 4.5 Properties of solutions of some infinite sequences of dynamical systems; 4.6 Integro-differential systems; Chapter 5 Integrability Criteria for Dynamical Systems: the Gradient-Holonomic Algorithm; 5.1 The Lax representation; 5.1.1 Generalized eigenvalue problem 5.1.2 Properties of the spectral problem |
Record Nr. | UNINA-9910789067803321 |
Blackmore Denis L | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nonlinear dynamical systems of mathematical physics : spectral and symplectic integrability analysis / / Denis Blackmore, Anatoliy K. Prykarpatsky, Valeriy Hr. Samoylenko |
Autore | Blackmore Denis L |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Singapore ; ; Hackensack, N.J., : World Scientific, c2011 |
Descrizione fisica | 1 online resource (563 p.) |
Disciplina | 530.15/539 |
Altri autori (Persone) |
PrikarpatskiĭA. K (Anatoliĭ Karolevich)
SamoylenkoValeriy Hr |
Soggetto topico |
Differentiable dynamical systems
Nonlinear theories Symplectic geometry Spectrum analysis - Mathematics |
ISBN |
1-283-23479-3
9786613234797 981-4327-16-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; Chapter 1 General Properties of Nonlinear Dynamical Systems; 1.1 Finite-dimensional dynamical systems; 1.1.1 Invariant measure; 1.1.2 The Liouville condition; 1.1.3 The Poincaré theorem; 1.1.4 The Birkhoff-Khinchin theorem; 1.1.5 The Birkhoff-Khinchin theorem for discrete dynamical systems; 1.2 Poissonian and symplectic structures on manifolds; 1.2.1 Poisson brackets; 1.2.2 The Liouville theorem and Hamilton-Jacobi method; 1.2.3 Dirac reduction: Symplectic and Poissonian structures on submanifolds
Chapter 2 Geometric and Algebraic Properties of Nonlinear Dynamical Systems with Symmetry: Theory and Applications2.1 The Poisson structures and Lie group actions on manifolds: Introduction; 2.2 Lie group actions on Poisson manifolds and the orbit structure; 2.3 The canonical reduction method on symplectic spaces and related geometric structures on principal fiber bundles; 2.4 The form of reduced symplectic structures on cotangent spaces to Lie group manifolds and associated canonical connections 2.5 The geometric structure of abelian Yang-Mills type gauge field equations via the reduction method2.6 The geometric structure of non-abelian Yang-Mills gauge field equations via the reduction method; 2.7 Classical and quantum integrability; 2.7.1 The quantization scheme, observables and Poisson manifolds; 2.7.2 The Hopf and quantum algebras; 2.7.3 Integrable flows related to Hopf algebras and their Poissonian representations; 2.7.4 Casimir elements and their special properties; 2.7.5 Poisson co-algebras and their realizations 2.7.6 Casimir elements and the Heisenberg-Weil algebra related structures2.7.7 The Heisenberg-Weil co-algebra structure and related integrable flows; Chapter 3 Integrability by Quadratures of Hamiltonian and Picard-Fuchs Equations: Modern Differential-Geometric Aspects; 3.1 Introduction; 3.2 Preliminaries; 3.3 Integral submanifold embedding problem for an abelian Lie algebra of invariants; 3.4 Integral submanifold embedding problem for a nonabelian Lie algebra of invariants; 3.5 Examples; 3.6 Existence problem for a global set of invariants; 3.7 Additional examples 3.7.1 The Henon-Heiles system3.7.2 A truncated four-dimensional Fokker-Planck Hamiltonian system; Chapter 4 Infinite-dimensional Dynamical Systems; 4.1 Preliminary remarks; 4.2 Implectic operators and dynamical systems; 4.3 Symmetry properties and recursion operators; 4.4 Bäcklund transformations; 4.5 Properties of solutions of some infinite sequences of dynamical systems; 4.6 Integro-differential systems; Chapter 5 Integrability Criteria for Dynamical Systems: the Gradient-Holonomic Algorithm; 5.1 The Lax representation; 5.1.1 Generalized eigenvalue problem 5.1.2 Properties of the spectral problem |
Record Nr. | UNINA-9910816879203321 |
Blackmore Denis L | ||
Singapore ; ; Hackensack, N.J., : World Scientific, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|