Advanced and Intelligent Control in Power Electronics and Drives / / edited by Teresa Orłowska-Kowalska, Frede Blaabjerg, José Rodríguez
| Advanced and Intelligent Control in Power Electronics and Drives / / edited by Teresa Orłowska-Kowalska, Frede Blaabjerg, José Rodríguez |
| Edizione | [1st ed. 2014.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 |
| Descrizione fisica | 1 online resource (XX, 410 p. 284 illus., 161 illus. in color.) |
| Disciplina | 006.3 |
| Collana | Studies in Computational Intelligence |
| Soggetto topico |
Computational intelligence
Automatic control Artificial intelligence Power electronics Computational Intelligence Control and Systems Theory Artificial Intelligence Power Electronics, Electrical Machines and Networks |
| ISBN |
9783319034010
3319034014 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part I: Advanced Power Electronic Control in Renewable Energy Sources -- Part II: Predictive Control of Power Converters and Drives -- Part III: Neuro and Nonlinear Control of Power Converters and Drives. |
| Record Nr. | UNINA-9910299483603321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2014 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced control of doubly fed induction generator for wind power systems / / Dehong Xu, Frede Blaabjerg, Wenjie Chen, Nan Zhu
| Advanced control of doubly fed induction generator for wind power systems / / Dehong Xu, Frede Blaabjerg, Wenjie Chen, Nan Zhu |
| Autore | Xu Dehong |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , [2018] |
| Descrizione fisica | 1 online resource (489 pages) |
| Disciplina | 621.313 |
| Soggetto topico |
Induction generators
Induction generators - Automatic control Wind turbines - Equipment and supplies |
| ISBN |
1-119-17208-X
1-119-17207-1 1-119-17209-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Matter -- Introduction to Wind Power Generation. Introduction -- Basics of Wind Power Generation System -- Grid Codes for Wind Power Generation Systems -- Modeling and Control of DFIG. Modeling of DFIG Wind Power Systems -- Control of DFIG Power Converters -- Operation of DFIG Under Distorted Grid Voltage. Analysis of DFIG Under Distorted Grid Voltage -- Multiple-Loop Control Of DFIG Under Distorted Grid Voltage -- Resonant Control of DFIG Under Grid Voltage Harmonics Distortion -- DFIG Under Unbalanced Grid Voltage -- Control of DFIG Wind Power System Under Unbalanced Grid Voltage -- Grid Fault Ride-Through of DFIG. Dynamic Model of DFIG Under Grid Faults -- Grid Fault Ride-Through Of DFIG -- Thermal Control of Power Converter in Normal and Abnormal Operations -- DFIG Test Bench. DFIG Test Bench. |
| Record Nr. | UNINA-9910554834303321 |
Xu Dehong
|
||
| Hoboken, New Jersey : , : John Wiley & Sons, , [2018] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Advanced control of doubly fed induction generator for wind power systems / / Dehong Xu, Frede Blaabjerg, Wenjie Chen, Nan Zhu
| Advanced control of doubly fed induction generator for wind power systems / / Dehong Xu, Frede Blaabjerg, Wenjie Chen, Nan Zhu |
| Autore | Xu Dehong |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons, , [2018] |
| Descrizione fisica | 1 online resource (489 pages) |
| Disciplina | 621.313 |
| Soggetto topico |
Induction generators
Induction generators - Automatic control Wind turbines - Equipment and supplies |
| ISBN |
1-119-17208-X
1-119-17207-1 1-119-17209-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Front Matter -- Introduction to Wind Power Generation. Introduction -- Basics of Wind Power Generation System -- Grid Codes for Wind Power Generation Systems -- Modeling and Control of DFIG. Modeling of DFIG Wind Power Systems -- Control of DFIG Power Converters -- Operation of DFIG Under Distorted Grid Voltage. Analysis of DFIG Under Distorted Grid Voltage -- Multiple-Loop Control Of DFIG Under Distorted Grid Voltage -- Resonant Control of DFIG Under Grid Voltage Harmonics Distortion -- DFIG Under Unbalanced Grid Voltage -- Control of DFIG Wind Power System Under Unbalanced Grid Voltage -- Grid Fault Ride-Through of DFIG. Dynamic Model of DFIG Under Grid Faults -- Grid Fault Ride-Through Of DFIG -- Thermal Control of Power Converter in Normal and Abnormal Operations -- DFIG Test Bench. DFIG Test Bench. |
| Record Nr. | UNINA-9910830532903321 |
Xu Dehong
|
||
| Hoboken, New Jersey : , : John Wiley & Sons, , [2018] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
AI for Power Electronics and Renewable Energy Systems
| AI for Power Electronics and Renewable Energy Systems |
| Autore | Hu Weihao |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2024 |
| Descrizione fisica | 1 online resource (345 pages) |
| Disciplina | 621.31028563 |
| Altri autori (Persone) |
ZhangGouzhou
ZhangZhenyuan AbulanwarSayed BlaabjergFrede |
| Collana | Energy Engineering Series |
| Soggetto topico |
Artificial intelligence
Renewable energy sources |
| ISBN |
1-83724-364-6
1-5231-6316-X 1-83953-775-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Intro -- Contents -- About the authors -- 1. Introduction to AI in power system | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- 2. Artificial intelligence for electric machine fault diagnosis | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- 3. Artificial intelligence in power electronic reliability, design, and control | Shuai Zhao, Yi Zhang and Frede Blaabjerg -- 4. Application of artificial intelligence in dual-active-bridge (DAB) converters | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- 5. An active distribution network voltage control using artificial intelligence | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- 6. Energy management of hybrid systems using artificial intelligence | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- 7. Artificial intelligence in energy management of microgrid | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- 8. Artificial intelligence in renewable energy systems small signal stability control | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- 9. Conclusions and outlook using AI in power systems | Weihao Hu, Guozhou Zhang, Zhenyuan Zhang, Sayed Abulanwar and Frede Blaabjerg -- Index. |
| Record Nr. | UNINA-9911006683003321 |
Hu Weihao
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cable Based and Wireless Charging Systems for Electric Vehicles : Technology and Control, Management and Grid Integration
| Cable Based and Wireless Charging Systems for Electric Vehicles : Technology and Control, Management and Grid Integration |
| Autore | Singh Rajiv |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2022 |
| Descrizione fisica | 1 online resource (413 pages) |
| Disciplina | 629.2293 |
| Altri autori (Persone) |
SanjeevikumarPadmanaban <1978->
DwivediSanjeet Kumar MolinasMarta BlaabjergFrede |
| Collana | Transportation |
| Soggetto topico | Electric vehicles - Batteries |
| ISBN |
1-83724-595-9
1-5231-4264-2 1-83953-179-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Halftitle Page -- Series Page -- Title Page -- Copyright -- Contents -- About the editors -- About the editors -- 1 Charging stations and standards -- 1.1 Introduction -- 1.2 Conductive charging of EVs -- 1.2.1 EV charging infrastructure -- 1.2.2 Integration of EV with power grid -- 1.2.3 International standards and regulations -- 1.3 Inductive charging of EVs -- 1.3.1 Need for inductive charging of EV -- 1.3.2 Modes of IPT -- 1.3.3 Operating principle of IPT -- 1.3.4 Static inductive charging -- 1.3.5 Dynamic inductive charging -- 1.3.6 Bidirectional power flow -- 1.3.7 International standards and regulations -- 1.4 Conclusion -- References -- 2 Grid impact of static and dynamic inductive charging and its mitigation through effective management -- 2.1 Introduction -- 2.2 Tool for estimating the demand for fast inductive charging stations -- 2.2.1 Estimation tool for static inductive charging -- 2.2.2 Estimation tool for dynamic inductive charging -- 2.3 Impact of inductive charging on the distribution grid -- 2.3.1 Impact of static inductive charging on the grid -- 2.3.2 Impact of dynamic inductive charging on the grid -- 2.4 RES and inductive charging -- 2.5 EMS for inductive charging of EVs -- 2.5.1 'Global' demand response services -- 2.5.2 'Local' demand response services at the substation level -- 2.6 Conclusions -- References -- 3 Wireless power transfer in EVs during motion -- 3.1 Introduction -- 3.2 WPT systems: basic theories and applications -- 3.3 System modeling -- 3.4 Circuit and parameter design of the system -- 3.4.1 Standards for WPT system -- 3.4.2 Types of transmitter and receiver coils -- 3.4.3 Types of compensation circuits -- 3.4.4 Parameter design methods -- 3.4.5 Considerations for soft-switching of inverter -- 3.5 Control system for DWC.
3.5.1 Load voltage and power regulation -- 3.5.2 Tuning of operating frequency -- 3.5.3 Load impedance matching -- 3.6 Future trends -- 3.6.1 Integration of WPT system and renewable energy systems -- 3.6.2 Vehicle to grid connection -- 3.6.3 V2V power transfer -- 3.6.4 Integration of WPT system and motor drive -- 3.7 Conclusion -- References -- 4 Considerations on dynamic inductive charging: optimizing the energy transfer at a high efficiency and experimental implementation -- 4.1 Introduction -- 4.2 Differences among static and dynamic inductive charging -- 4.2.1 Analysis of a dynamic inductive charging system -- 4.2.2 Bifurcation in dynamic inductive charging -- 4.2.3 Self-inductance variations in dynamic inductive charging -- 4.3 Optimizing the power transfer and the efficiency in dynamic inductive charging -- 4.4 Control system in dynamic inductive charging -- 4.4.1 Primary side control -- 4.4.2 Secondary side control -- 4.5 Application of the optimization problem and the control system in a circular magnetic coupler -- 4.5.1 Application of the optimization problem -- 4.5.2 Simulation of the applied control -- 4.6 Experimental validation of the proposed optimization and control scheme -- 4.6.1 Implementation of the magnetic coupler -- 4.6.2 Application of the proposed optimization method in the implemented magnetic coupler -- 4.6.3 Implementation of the inverter and the control system -- 4.7 Conclusions -- References -- 5 Converter classification, analysis, and control issues with EV -- 5.1 Introduction -- 5.2 State of art of power converters used for EV application -- 5.3 Quadratic converters -- 5.4 Design example of converter for HEV/EV -- 5.4.1 Working principle of bidirectional converter -- 5.4.2 Steady-state analysis -- 5.4.3 Passive components design. 5.4.4 Small-signal analysis -- 5.5 Simulation and experimental verifications -- 5.6 EV drives and control -- 5.7 Conclusion -- References -- 6 Reducing grid dependency of EV charging using renewable and storage systems -- 6.1 EV charging system -- 6.1.1 EV charger topologies -- 6.1.2 EV charging/discharging strategies -- 6.2 Integration of EV charging-home solar PV system -- 6.2.1 Operation modes of EVC-HSP system -- 6.2.2 Control strategy of EVC-HSP system -- 6.2.3 Simulation results of EVC-HSP system -- 6.2.4 Experimental results of EVC-HSP system -- 6.2.5 Summary designing of an EVC-HSP system -- 6.3 Level 3 - fast-charging infrastructure with solar PV and energy storage -- 6.3.1 Power converter for FCI -- 6.3.2 Control diagram for FCI -- 6.3.3 Simulation results for FCI -- 6.3.4 Summary designing of an FCI -- 6.4 Conclusions -- References -- 7 Optimal charge control strategies of EVs for enhancement of battery life and lowering the charging cost -- 7.1 Introduction -- 7.2 Integration of EVs in power systems -- 7.2.1 EV chargers -- 7.2.2 EV batteries -- 7.3 Charge/discharge control strategies of EVs -- 7.3.1 Configuration for the optimal charging/discharging strategies of EVs -- 7.3.2 Development of the analytical models of EVs -- 7.4 Optimal control strategy for integration of EVs to enhance battery life and lower the charging cost -- 7.4.1 Optimal EV charging control strategy -- 7.4.2 Simulation results and discussions -- 7.5 Conclusion -- References -- 8 Energy management strategies in microgrids with EV and wind generators -- 8.1 Introduction -- 8.2 Day-ahead MG EMS considering EVs -- 8.2.1 Effects of EV's charging/discharging strategies on the EMS -- 8.2.2 Objective functions and constraints for MG-EMS equipped EVs -- 8.2.3 Multi-objective optimization. 8.2.4 Uncertainty modeling -- 8.3 Real-time MG energy management -- 8.4 MG Energy management with EVs, seawater desalination, and RESs: a case study -- 8.4.1 Overview of the proposed MG -- 8.4.2 Mathematical modeling and proposed algorithm -- 8.4.3 Numerical results -- 8.4.4 Comparative studies -- 8.5 Conclusion -- References -- 9 Optimal energy management strategies for integrating renewable sources and EVs into microgrids -- 9.1 Introduction -- 9.2 Architecture of microgrids -- 9.2.1 Microgrid classification -- 9.2.2 Microgrid components -- 9.3 Roles of EVs in microgrids -- 9.3.1 Smoothing renewable generation -- 9.3.2 Economic benefits -- 9.3.3 Power/energy reserve -- 9.3.4 Mitigating load consumption -- 9.3.5 Reliability improvement -- 9.3.6 Scheduling power exchange -- 9.3.7 Peak shaving -- 9.3.8 Frequency regulation using EVs -- 9.4 Energy management system of microgrids -- 9.4.1 Problem identification -- 9.4.2 EMS strategies for microgrids with EVs -- 9.5 Conclusions -- References -- 10 Charging infrastructure layout and planning for plug-in electric vehicles -- 10.1 Introduction -- 10.2 Electric vehicle supply equipment technology -- 10.3 Basic EVSE components -- 10.3.1 EVSE -- 10.3.2 Electric vehicle connector -- 10.3.3 Electric vehicle inlet -- 10.4 PEV battery systems -- 10.4.1 Battery technology-a power unit of EV -- 10.5 Charging system -- 10.5.1 Options for electric vehicle supply equipment -- 10.6 Battery charger -- 10.7 EVSE charger classifications -- 10.8 EVSE signaling and communications -- 10.9 Vehicle-to-grid -- 10.10 Wireless charging -- 10.10.1 Inductive and resonant technologies -- 10.10.2 Research on wireless charging -- 10.11 Vehicle design -- 10.11.1 Society of automotive engineers -- 10.12 Innovative charging solutions. 10.12.1 Solar charging -- 10.12.2 Development hindrances in EVSE infrastructure expansion -- 10.12.3 Governmental awareness -- 10.12.4 Financial surprises -- 10.12.5 Standards -- 10.13 Site visit and evaluation and selection -- 10.14 Planning and selection of charging station -- 10.15 A few initiatives and recommendation for accelerating the development of EVSE infrastructure -- 10.16 Feasibility of accelerating EVSE installation -- 10.17 Conclusion and recommendations -- 10.17.1 Key recommendations -- References -- 11 Power loss and thermal modeling of charger circuit for reliability enhancement of EV charging systems -- 11.1 Introduction -- 11.2 Power electronic converters in EVs -- 11.3 Modulation and analytical power loss model of power electronic converters -- 11.3.1 Conduction power losses in traction inverters -- 11.3.2 Analytical model of switching power losses -- 11.3.3 Power loss profile in traction inverter -- 11.4 Thermal reliability of power converters -- 11.4.1 Electro-thermal behavior of power IGBT modules -- 11.4.2 Design and FEM analysis of power modules in ANSYS -- 11.4.3 3D thermal model of IGBT modules and thermal coupling -- 11.5 Conclusion -- References -- Index -- Back Cover. |
| Altri titoli varianti | Cable Based and Wireless Charging Systems for Electric Vehicles |
| Record Nr. | UNINA-9911007033603321 |
Singh Rajiv
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control in power electronics [[electronic resource] ] : selected problems / / editors, Marian P. Kazmierkowski, R. Krishnan, Frede Blaabjerg
| Control in power electronics [[electronic resource] ] : selected problems / / editors, Marian P. Kazmierkowski, R. Krishnan, Frede Blaabjerg |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Academic Press, c2002 |
| Descrizione fisica | 1 online resource (529 p.) |
| Disciplina |
621.31/7 22
621.317 |
| Altri autori (Persone) |
KaźmierkowskiMarian P
KrishnanR (Ramu) BlaabjergFrede |
| Collana | Academic Press series in engineering |
| Soggetto topico |
Electronic control
Power electronics |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-00540-1
9786611005405 0-08-049078-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Control in Power Electronics; Copyright Page; Contents; Preface; List of Contributors; Part I: PWM Converters: Topologies and Control; Chapter 1. Power Electronic Converters; Chapter 2. Resonant dc Link Converters; Chapter 3. Fundamentals of the Matrix Converter Technology; Chapter 4. Pulse Width Modulation Techniques for Three-Phase Voltage Source Converters; Part II: Motor Control; Chapter 5. Control of PWM Inverter-Fed Induction Motors; Chapter 6. Energy Optimal Control of Induction Motor Drives
Chapter 7. Comparison of Torque Control Strategies Based on the Constant Power Loss Control System for PMSMChapter 8. Modeling and Control of Synchronous Reluctance Machines; Chapter 9. Direct Torque and Flux Control (DTFC) of ac Drives; Chapter 10. Neural Networks and Fuzzy Logic Control in Power Electronics; Part III: Utilities Interface and Wind Turbine Systems; Chapter 11. Control of Three-Phase PWM Rectifiers; Chapter 12. Power Quality and Adjustable Speed Drives; Chapter 13. Wind Turbine Systems; Index |
| Record Nr. | UNINA-9910458137303321 |
| Amsterdam ; ; Boston, : Academic Press, c2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control in power electronics [[electronic resource] ] : selected problems / / editors, Marian P. Kazmierkowski, R. Krishnan, Frede Blaabjerg
| Control in power electronics [[electronic resource] ] : selected problems / / editors, Marian P. Kazmierkowski, R. Krishnan, Frede Blaabjerg |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Academic Press, c2002 |
| Descrizione fisica | 1 online resource (529 p.) |
| Disciplina |
621.31/7 22
621.317 |
| Altri autori (Persone) |
KaźmierkowskiMarian P
KrishnanR (Ramu) BlaabjergFrede |
| Collana | Academic Press series in engineering |
| Soggetto topico |
Electronic control
Power electronics |
| ISBN |
1-281-00540-1
9786611005405 0-08-049078-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Control in Power Electronics; Copyright Page; Contents; Preface; List of Contributors; Part I: PWM Converters: Topologies and Control; Chapter 1. Power Electronic Converters; Chapter 2. Resonant dc Link Converters; Chapter 3. Fundamentals of the Matrix Converter Technology; Chapter 4. Pulse Width Modulation Techniques for Three-Phase Voltage Source Converters; Part II: Motor Control; Chapter 5. Control of PWM Inverter-Fed Induction Motors; Chapter 6. Energy Optimal Control of Induction Motor Drives
Chapter 7. Comparison of Torque Control Strategies Based on the Constant Power Loss Control System for PMSMChapter 8. Modeling and Control of Synchronous Reluctance Machines; Chapter 9. Direct Torque and Flux Control (DTFC) of ac Drives; Chapter 10. Neural Networks and Fuzzy Logic Control in Power Electronics; Part III: Utilities Interface and Wind Turbine Systems; Chapter 11. Control of Three-Phase PWM Rectifiers; Chapter 12. Power Quality and Adjustable Speed Drives; Chapter 13. Wind Turbine Systems; Index |
| Record Nr. | UNINA-9910784569903321 |
| Amsterdam ; ; Boston, : Academic Press, c2002 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control of power electronic converters and systems . Volume 2 / / edited by Frede Blaabjerg
| Control of power electronic converters and systems . Volume 2 / / edited by Frede Blaabjerg |
| Pubbl/distr/stampa | London, United Kingdom : , : Academic Press, an imprint of Elsevier, , 2018 |
| Descrizione fisica | 1 online resource (570 pages) : illustrations |
| Disciplina | 621.313 |
| Soggetto topico |
Electric current converters
Electronic control Power electronics |
| ISBN |
0-12-816168-X
0-12-816136-1 9780128161685 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583352103321 |
| London, United Kingdom : , : Academic Press, an imprint of Elsevier, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Control of power electronic converters and systems . Volume I / / edited by Frede Blaabjerg
| Control of power electronic converters and systems . Volume I / / edited by Frede Blaabjerg |
| Pubbl/distr/stampa | London, England : , : Academic Press, , 2018 |
| Descrizione fisica | 1 online resource (394 pages) : illustrations (some color), tables, graphs |
| Disciplina | 621.313 |
| Soggetto topico |
Electric current converters
Electric current converters - Automatic control |
| ISBN |
0-12-805436-0
0-12-805245-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910583385003321 |
| London, England : , : Academic Press, , 2018 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Cyber Security for Microgrids
| Cyber Security for Microgrids |
| Autore | Sahoo Subham |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Stevenage : , : Institution of Engineering & Technology, , 2022 |
| Descrizione fisica | 1 online resource (265 pages) |
| Disciplina | 005.8 |
| Altri autori (Persone) |
BlaabjergFrede
DragicevicTomislav |
| Collana | Energy Engineering |
| Soggetto topico | Database security |
| ISBN |
1-83724-497-9
1-5231-5334-2 1-83953-332-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Halftitle Page -- Series Page -- Title Page -- Copyright -- Contents -- About the Editors -- 1 Cyber-induced power system steady-state and dynamic issues -- 1.1 Introduction -- 1.2 System structure and problem description -- 1.2.1 System operational structure -- 1.2.2 Feasibility in system level -- 1.2.3 Stability issue in microgrid level -- 1.3 Cyber-induced power flow feasibility issue -- 1.3.1 Introduction -- 1.3.2 System modeling and problem statement -- 1.3.3 Defense strategy -- 1.4 Resiliency mechanism in microgrids -- 1.5 Conclusion -- References -- 2 Modern power electronics in active distribution network -- 2.1 Introduction -- 2.2 AC/DC distribution systems -- 2.3 Modern power electronics - Key enablers of intelligent grids -- 2.3.1 Renewable energy interfacing -- 2.3.2 High-voltage DC transmission systems -- 2.3.3 Flexible AC transmission systems -- 2.3.4 Smart transformer -- 2.4 Controllability -- 2.5 Artificial intelligence in modern power systems -- 2.5.1 Energy forecasting -- 2.5.2 Scheduling and electricity market -- 2.5.3 System optimization and stability control -- 2.5.4 Fault detection and protection -- 2.5.5 Cybersecurity -- 2.6 Cyber-physical security in active distribution network -- 2.6.1 Potential vulnerability -- 2.6.2 Vulnerability analysis of cyber attacks on control of VSCs -- 2.6.3 Cyber attacks in active distribution network -- References -- 3 Microgrids in mission-critical applications -- 3.1 Introduction -- 3.2 Electric aircrafts -- 3.3 MVDC shipboards -- 3.4 Coordinated control in aircrafts and shipboards -- 3.4.1 Aircraft power systems -- 3.4.2 Shipboard power systems -- 3.5 Threat analysis against cyber attacks -- 3.6 Case study of MVDC shipboard microgrid -- 3.6.1 Attack Scenario 1 -- 3.6.2 Attack Scenario 2 -- 3.7 Conclusion -- References -- 4 Situational awareness of cyber attacks in smart grids.
4.1 Introduction -- 4.1.1 Related work -- 4.1.2 Challenges for wide-area situational awareness -- 4.2 Wide-area cybersecurity situational awareness -- 4.2.1 Conceptual architecture -- 4.3 Smart grid cybersecurity testbed -- 4.4 Case study: anomaly detection for WAMS -- 4.4.1 Synchrophasor-based WAMS -- 4.4.2 Problem formulation -- 4.4.3 Prototype demonstration using the commercial platform -- 4.5 Cybersecurity training for situational awareness -- 4.6 Conclusion -- References -- 5 Artificial intelligence-aided detection of data manipulation attacks in smart grid -- 5.1 Introduction -- 5.1.1 Power grid as a cyber-physical system -- 5.1.2 Cybersecurity concerns and related work -- 5.2 Data manipulation attacks on PSSE -- 5.2.1 Brief overview of state estimation -- 5.2.2 Attack formulation -- 5.2.3 Impact analysis -- 5.3 Defense strategies against FDIAs -- 5.3.1 Securing measurements: merits and demerits -- 5.3.2 Hybrid statistical-AI-based detection -- 5.4 Summary -- References -- 6 Cyber security threats in multi-agent microgrids -- 6.1 Cyber-physical MG system architecture -- 6.1.1 Microgrid physical layer architecture -- 6.1.2 Cyber-communication layer -- 6.1.3 Control layer -- 6.2 Distributed control for AC MG -- 6.2.1 Optimal dispatch control along with frequency restoration -- 6.2.2 Reactive power sharing along with network voltage restoration -- 6.3 Cyber threats in multi-agent-based MGs -- 6.3.1 Types of cyberattacks -- 6.4 Multi-agent-based cyberattack detection algorithms -- 6.4.1 Security at cyber layer -- 6.4.2 Security at physical and control layer -- 6.5 Summary -- References -- 7 Communication-assisted protections for DC microgrids and their performance analysis during cyberattacks -- 7.1 Introduction -- 7.1.1 Related works -- 7.1.2 Chapter focus -- 7.2 Fault analysis in DC microgrids -- 7.2.1 Analysis of capacitor discharge. 7.2.2 Freewheeling diode operation -- 7.3 A Unit protection scheme for DC microgrid -- 7.3.1 The unit protection methodology -- 7.3.2 Operation issues and economic aspects -- 7.3.3 Economics -- 7.3.4 Case study -- 7.3.5 Performance with noisy signals -- 7.4 Centralized protection of DC microgrids -- 7.4.1 The centralized protection methodology -- 7.4.2 Cosine similarity index (CS1)-based protection decision -- 7.4.3 Case study -- 7.4.4 Discussion -- 7.5 Performance of communication-based protections during cyber-attacks -- 7.5.1 Performance of unit protection for cyberattack -- 7.5.2 Performance of centralized protection for cyberattack -- 7.6 Conclusion -- References -- 8 Cyber-physical microgrids: toward flexible energy districts -- 8.1 Introduction -- 8.2 Impact of nearly zero energy districts -- 8.3 Methods for improvement of energy flexibility in energy districts -- 8.4 Cybersecurity of flexible energy districts -- 8.5 Impact of cyberattacks on flexibility utilization -- 8.6 Conclusion -- References -- 9 Design and modeling approaches to cyberattacks for grid-tied PV systems -- 9.1 Overview -- 9.2 Cyberattack for grid-tied PV system -- 9.2.1 DoS attack -- 9.2.2 Data integrity attack -- 9.2.3 Replay attack -- 9.2.4 Stealthy attack -- 9.2.5 Harmonic injection attack -- 9.2.6 Other attacks -- 9.3 Physics-based approach -- 9.4 Data-oriented approach -- 9.5 FDI attack generation -- 9.5.1 Physics-oriented tool -- 9.5.2 Data-oriented tool -- 9.5.3 GT approach -- 9.5.4 Generative adversarial networks -- 9.6 Result and analysis -- 9.7 Conclusion -- References -- 10 Stealth cyber attacks in microgrids: detectability and observability -- 10.1 Introduction -- 10.2 Cyber-physical preliminaries of microgrids -- 10.3 Proposed stealth attack detection strategies -- 10.3.1 Stealth attack on voltages -- 10.3.2 Stealth attack on currents -- 10.4 Results. 10.4.1 Stealth voltage attacks -- 10.4.2 Stealth current attacks -- 10.5 Conclusion -- Appendix -- References -- 11 Resilient distributed control strategies in microgrids against cyber attacks -- 11.1 Introduction -- 11.1.1 Related works -- 11.1.2 Chapter focus -- 11.1.3 Chapter structure -- 11.2 Cyber-physical DC microgrids -- 11.2.1 Physical networks -- 11.2.2 Cyber networks -- 11.2.3 Impact of cyber attacks on microgrids -- 11.3 Resilient cooperative control in DC microgrids -- 11.3.1 Structure of resilient cooperative controllers -- 11.3.2 Proposed baseline attack detectors -- 11.3.3 Attack scenarios and adversary model -- 11.3.4 Proposed model of cyber-physical DC microgrids -- 11.3.5 Metrics for resilient analysis -- 11.4 Stability and attack-resilience analysis -- 11.4.1 State space representation of cyber-physical DC microgrids -- 11.4.2 Stability analysis in the absence of stealthy FDI attacks -- 11.4.3 Stability under stealthy FDI attacks -- 11.4.4 Stealthy FDI attack-resilience analysis -- 11.4.5 Design of resilient cooperative control parameters -- 11.5 Simulation results -- 11.6 Conclusion -- References -- 12 Cyber-physical testbeds for smart grid and electric vehicle-charging infrastructure -- 12.1 Introduction -- 12.2 Brief description of MG -- 12.3 Vulnerabilities associated with MG -- 12.3.1 Overview of the testbed for MG -- 12.3.2 Features of testbed -- 12.4 Brief description of EV-charging infrastructure -- 12.5 Vulnerabilities associated with EV-charging infrastructure -- 12.5.1 Overview of the testbed for EV-charging infrastructure -- 12.5.2 Features of testbed -- 12.6 Conclusion -- References -- 13 Event-driven resiliency of microgrids against cyber attacks -- 13.1 Introduction -- 13.2 Preliminaries of cyber-physical microgrids -- 13.2.1 DC microgrids -- 13.2.2 AC microgrids. 13.3 Proposed event-driven resiliency against cyber attacks -- 13.3.1 DC microgrids -- 13.3.2 Mitigation -- 13.3.3 AC microgrids -- 13.4 Results -- 13.4.1 DC microgrids -- 13.4.2 AC microgrids -- 13.5 Conclusions -- Appendix -- References -- 14 Cybersecurity in future energy systems: outlooks and recommendations -- 14.1 Introduction -- 14.1.1 Energy transition -- 14.1.2 Cyber resilience -- 14.2 Vulnerabilities, outlooks, and recommendations -- 14.3 Book summary -- References -- Index -- Back Cover. |
| Record Nr. | UNINA-9911004828703321 |
Sahoo Subham
|
||
| Stevenage : , : Institution of Engineering & Technology, , 2022 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||