Climate Change and Agrometeorology / / by Latief Ahmad, Asim Biswas, Jon Warland, Insha Anjum |
Autore | Ahmad Latief |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (226 pages) |
Disciplina | 630.2515 |
Altri autori (Persone) |
BiswasAsim
WarlandJon AnjumInsha |
Soggetto topico |
Agriculture
Bioclimatology Climatology Human ecology - Study and teaching Climate Change Ecology Climate Sciences Environmental Studies |
ISBN | 981-9948-63-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Preface -- About the Authors -- Chapter 1 Agricultural Meteorology: A Preview -- Chapter 2 Atmospheric Temperature -- Chapter 3 Atmospheric Pressure and Solar Radiation -- Chapter 4 Atmospheric Humidity -- Chapter 5 Microclimate and Climatic Normals -- Chapter 6 Weather Disasters and Management, Air Pollution and Role of Meteorology -- Chapter 7 Weather Forecasting -- Chapter 8 Climate Change Impact on Plants -- Chapter 9 Climate Change Effect on Fruit Production -- Chapter 10 Climate change Effect on Forests. |
Record Nr. | UNINA-9910765488803321 |
Ahmad Latief | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Fundamentals and Applications of Crop and Climate Science / / by Latief Ahmad, Gazi Mohammad Shoaib Shah, Asim Biswas |
Autore | Ahmad Latief |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (272 pages) |
Disciplina | 630 |
Altri autori (Persone) |
ShahGazi Mohammad Shoaib
BiswasAsim |
Soggetto topico |
Agronomy
Agriculture Soil science Bioclimatology Climatology Soil Science Climate Change Ecology Climate Sciences |
ISBN | 3-031-61459-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Chapter 1 Introduction -- Chapter 2 Soils -- Chapter 3 Plant Physiology -- Chapter 4 Crop Production Technology and Improvement -- Chapter 5 Weed Management -- Chapter 6 Water Management -- Chapter 7 Precision Agriculture -- Chapter 8 Remote Sensing, Geo and Agri Informatics -- Chapter 9 Protected Farming -- Chapter 10 Organic Farming and Sustainable Agriculture -- Chapter 11 Agrometeoreology -- Chapter 12 Climate Change and Agriculture. |
Record Nr. | UNINA-9910886091503321 |
Ahmad Latief | ||
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Handbook of Energy Management in Agriculture [[electronic resource] /] / edited by Amitava Rakshit, Asim Biswas, Deepranjan Sarkar, Vijay Singh Meena, Rahul Datta |
Autore | Rakshit Amitava |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (767 pages) |
Disciplina | 338.16 |
Altri autori (Persone) |
BiswasAsim
SarkarDeepranjan MeenaVijay Singh DattaRahul |
Soggetto topico |
Agriculture
Ecology Subsistence farming Subsistence Agriculture |
ISBN | 981-19-7736-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Contributors -- Part I: Energy Requirement in the Agricultural Food Chain -- Carbon Footprint in Rice Cultivation -- 1 Introduction -- 2 Variation of C Footprint in Different Phenology of Rice Cultivation -- 2.1 Methane Emission and Paddy Growth Stages -- 2.2 The Life Cycle of Rice Production and Carbon Footprint -- 2.3 Assessment of Carbon Footprint in Rice Cultivation -- 3 Rice Straw Burning and C Footprint -- 4 Monitoring of GHG Emission: Methodology and Calculation -- 4.1 Measurement of Methane and Nitrous Oxide -- 5 Calculation of CH4 and N2O Flux -- 5.1 Measurement of Carbon Dioxide (CO2) -- 5.1.1 Alkali Trap Method -- 5.1.2 Soil Respirator -- 5.1.3 Long-Term Measuring Chamber -- 5.1.4 Temporary Portable Measuring Chamber -- 6 Agronomic Intervention to Reduce GHG Emission Under Rice Cultivation -- 6.1 Improved Irrigation Water Management -- 6.1.1 Alternate Wetting and Drying -- 6.1.2 Midseason Drainage -- 6.1.3 Drip Irrigation -- 6.1.4 Laser Land Leveling -- 7 Adaption of Best Nitrogen Management Techniques -- 7.1 Slow-Release Fertilizers -- 7.2 Urease Inhibitors -- 7.3 Nitrification Inhibitors -- 7.4 Urea Deep Placement -- 7.5 More Use of Organic Manures/Green Manures -- 7.6 4R Nutrient Stewardship Based N Application -- 8 Adaption of Improved Rice Production Technologies -- 9 Decision Support Tool -- 10 Soil and Nutrient Management to Reduce GHG Emission Under Rice Cultivation -- 10.1 Mitigating CH4 Emission -- 10.2 Mitigating N2O Emission -- 11 Future Roadmap for Carbon-Smart Rice Cultivation -- 12 Conclusion -- References -- Energy Requirements for Sustainable Sugarcane Cultivation -- 1 Introduction -- 1.1 Method of Energy Calculation -- 2 Operation-Wise Energy Footprints -- 2.1 Seedbed Preparation -- 2.2 Planting/Transplanting.
2.3 Weeding and Intercultural Operations -- 2.4 Irrigation -- 2.5 Fertilizer/Nutrient Management -- 2.6 Plant Protection -- 2.7 Harvesting -- 2.8 Residue Management and its Benefits -- 3 Source-Wise Energy -- 3.1 Overall Energy Assessment Based on the Category of Energy -- 3.2 Energy Indices -- 4 Future Pathway -- 4.1 Strategies for Energy Optimization -- 5 Conclusion -- References -- Carbon Footprint of Different Energy-Intensive Systems -- 1 Introduction -- 2 Agriculture as an Energy-Intensive System -- 3 Definition of Carbon Footprint -- 4 Why Carbon Footprinting? -- 5 Agriculture and Climate Change -- 6 Factors Contributing to Carbon Footprint of Different Systems in Agriculture -- 7 Use of Inorganic N Fertilizer -- 8 Fossil Fuels -- 9 Pesticide Use -- 10 Fuels -- 11 Waste and Water -- 12 Carbon Footprint Calculation -- 13 Carbon Footprint Calculations for Energy -- 14 Selection of Conversion Factors -- 15 Steps to Reduce Carbon Footprint -- 15.1 New Technologies to Reduce Enteric Fermentation -- 16 Cutting Emissions from Pasture Manure -- 17 Increase Nitrogen Use Efficiency to Reduce Fertilizer Emissions -- 18 Rice Management and Varieties That Reduce Emissions -- 19 Increasing Agricultural Energy Efficiency and Reducing Fossil Fuels -- 20 Concentrate on Practical Options for Carbon Sequestration in Soils -- 21 Reduction in Fertilizer Use and N2-Fixing Pulses to Lower Carbon Footprint -- 22 Conclusion -- References -- Carbon Footprint and Sustainability of Different Agricultural Production Systems in Climate Change Scenario -- 1 Introduction -- 2 Emission from Mechanical Operations -- 3 Emission from Irrigation -- 3.1 Emission from Fertilizer Use -- 4 Emission from Livestock -- 4.1 Methane-Reducing Feed Additives and Supplements -- 5 Carbon Efficiency and Carbon Intensity. 6 Efficient Farming Practices That Reduce Emissions from Crop Production -- 7 Scenario of Carbon Footprints in Major Food Crops -- 8 Conclusion -- References -- Energy Budgeting of Crops Under Rainfed Conditions -- 1 Introduction -- 2 Rainfed Ecology: A Fragile Ecology -- 2.1 Global Scenario -- 2.2 Rainfed Ecology in the Indian Context -- 2.3 Challenges Faced in Rainfed Ecology -- 2.4 Emerging Paradigm to Mitigate the Fragile Ecology -- 3 Energy Issue under Rainfed Agroecology -- 3.1 Intensification Processes -- 3.2 Soil Water/Moisture Stress -- 3.3 Genetic Resource Constraints -- 3.4 Soil/ Water Erosion -- 3.5 Nonjudicious/Rampant Use of Inorganic Fertilizers -- 3.6 Low Soil Organic Carbon Content -- 3.7 Low External Inputs -- 4 Energy Use, Dynamics, and Efficiency Under Different Crops -- 4.1 Farm Power Use Patterns -- 4.2 Energy Use Pattern -- 4.2.1 Crop Establishment Methods -- 4.2.2 Organic Farming -- 4.2.3 Conservation Agriculture -- 4.2.4 Energy Dynamics for Different Farm Operations -- Seedbed Preparation and Sowing -- Fertilizer Application -- Pesticide Application -- Irrigation -- Road Transport -- 4.2.5 Energy Dynamics Under Different Crops -- 4.2.6 Energy Analysis Parameters -- 5 Designing a Sustainable Solution for Energy Management -- 5.1 Farming Practices that Improve Energy Efficiency -- 5.1.1 Improved Fertilizer and Pesticide Use -- 5.1.2 Zero Tillage and Conservation Agriculture -- 5.1.3 Cultural or Ecological Practices -- 5.1.4 Tractors and Machinery Maintenance -- 5.2 Adoption of State-of-the-Art Technologies in Agriculture -- 5.2.1 Precision Agriculture -- 5.2.2 Use of Robotics -- 5.3 Production and Use of Renewable Energy for Farming Operations -- 6 Conclusions -- References -- Energy Use and Economic Evaluation Under Conservation and Organic Farming -- 1 Introduction. 1.1 Why Should Energy and Economic Budgeting Be Done for Farming System? -- 2 Farm-Level Economics of Conventional and Organic Farming -- 2.1 Direct Comparison Between Organic and Conventional Farms Based on Farm Input and Output Data -- 2.2 Modelling Comparisons of Organic and Conventional Farms -- 3 Comparison of Energy Budgets of Different Conventional and Organic Farming Production Systems -- 4 Farm-Level Energy Budgets of Conventional Farming and Organic Farming -- 5 Energy Budgeting of Conventional and Organic Farming -- 6 Economic Budgeting of Conventional and Organic Farming -- 7 Conclusions -- References -- Part II: Different Aspects/Concepts of Energy Efficiency and Management -- Agricultural Residue Management Using Forced Draft Gasifier Cookstove -- 1 Introduction -- 2 Methodology -- 2.1 Designing Parameters: Stove -- 2.1.1 Amount of Air and Energy Needed for Gasification (AFR) -- 2.1.2 Cooking Power and Fuel Burning Rate -- 2.1.3 Hearth Load and Fuel Storage Capacity -- 2.2 Description of the Gasifier Stove -- 2.3 Principle of Operation -- 2.4 Observations and Findings: TLUD Cookstove -- 3 Results and Discussion -- 3.1 Air Supply and Gas Concentrations -- 4 Conclusions -- References -- Biomass Energy from Agriculture -- 1 Introduction -- 2 Biomass Conversion Techniques -- 2.1 Direct Combustion -- 2.2 Thermochemical Conversion -- 2.2.1 Pyrolysis -- 2.2.2 Gasification -- 2.2.3 Carbonization -- 2.3 Chemical Conversion -- 2.4 Biochemical Conversion -- 2.4.1 Anaerobic Digestion -- 2.4.2 Methane Production in Landfills -- 2.4.3 Ethanol Fermentation -- 2.5 Densification Techniques -- 3 Indian Biomass Energy Conversion Policy -- 4 Conclusion -- References -- Biomass -- 1 Introduction -- 2 Biomass and Its Characteristics -- 3 Forms of Biofuels -- 3.1 Solid Biofuels -- 3.1.1 Briquetting -- 3.1.2 Charcoal -- 3.1.3 Biochar -- 3.2 Liquid Biofuels. 3.3 Gaseous Biofuels -- 4 Agricultural Biomass As Source of New Energy -- 4.1 Ethanol -- 4.1.1 History of Ethanol Production -- 4.1.2 Process of Ethanol Production -- 4.1.3 Benefits and Disadvantages in Ethanol Production -- 4.1.4 The Drawbacks of Ethanol Production and Use -- 4.1.5 Current Status and Potential of Ethanol Production in the World -- 4.1.6 Future Perspective in Its Production -- 4.1.7 Indian Case Study and Policy Measures -- 4.2 Biodiesel -- 4.2.1 History -- 4.2.2 Production Process -- 4.2.3 Extraction from Jatropha -- 4.2.4 Other Production Processes -- 4.2.5 Biodiesel Properties -- 4.2.6 Advantages of Biodiesel Use -- 4.2.7 Disadvantages of Biodiesel Use -- 5 Process of Biomass Conversion to Energy -- 5.1 Combustion -- 5.2 Thermochemical Conversion -- 5.2.1 Pyrolysis -- 5.2.2 Gasification -- 5.3 Chemical Conversion -- 6 Conclusion -- References -- Biomass Technologies for Crop Residue Management -- 1 Crop Residue Management Using Densification Techniques -- 2 Biomass Briquetting: Densification Technology for Agricultural Waste -- 3 Biomass Densification Technologies -- 4 Briquetting Process -- 4.1 Raw Materials Collection -- 4.2 Size Reduction of Raw Materials -- 4.2.1 Drying -- 4.2.2 Size Reduction -- 4.3 Raw Material Mixing -- 4.4 Compaction -- 4.5 Heat Reduction and Storage of Briquettes -- 5 Availability of Raw Materials -- 6 Factors Affecting Briquetting Process -- 7 Methods of Briquetting -- 8 Briquetting Technologies -- 9 Advantages of Briquettes -- 10 Application of Briquettes -- 11 Advantages -- 12 Basic Needs to Start a Briquette Production Unit -- 13 Pelletizing -- 14 Conclusion -- References -- Internet of Things (IoT) Framework to Support Sustainable Food Production -- 1 Introduction -- 2 Innovation in the Agricultural Sector -- 2.1 Green Revolution -- 2.2 Process Mechanization -- 2.3 Precision Agriculture. 2.4 Agriculture 4.0. |
Record Nr. | UNINA-9910725098803321 |
Rakshit Amitava | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Smart Sensing Technologies for Agriculture |
Autore | Adamchuk Viacheslav |
Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
Descrizione fisica | 1 electronic resource (232 p.) |
Soggetto topico | History of engineering & technology |
Soggetto non controllato |
moisture measurement
Kalman filter model predictive control germination paper convolutional neural networks livestock lying posture standing posture Three-dimensional mapping quasi-3D inversion algorithm cation exchange capacity clay content sandy infertile soil optical micro-sensors crop protection precision agriculture infrared spectroscopy principal component analysis (PCA) partial least squares (PLS) droplet characterization apparent electrical conductivity (ECa) pH UAV boundary-line quantile regression law of minimum on-site detection ion-selective electrode (ISE) soil nitrate nitrogen (NO3−-N) soil moisture sensor fusion transfer learning deep learning body dimensions point cloud Kd-network feature recognition FFPH non-contact measurement X-ray fluorescence spectroscopy soil nutrients proximal soil sensing soil testing laser-induced breakdown spectroscopy LIBS elemental composition broiler surface temperature extraction thermal image processing head region locating adaptive K-means ellipse fitting harvesting robot gripper segmentation cutting point detection soil soil electrical resistivity autonomous robot real-time measurement precision farming mapping precision weeding multispectral imaging kinetic stereo imaging plant detection yield estimation machine vision willow tree |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910557667303321 |
Adamchuk Viacheslav | ||
Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Spatiotemporal Dynamics of Meteorological and Agricultural Drought in China / / by Yi Li, Faliang Yuan, Qiang Zhou, Fenggui Liu, Asim Biswas, Guang Yang, Zhihao Liao |
Autore | Li Yi |
Edizione | [1st ed. 2024.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
Descrizione fisica | 1 online resource (250 pages) |
Disciplina |
551
363.34 |
Altri autori (Persone) |
YuanFaliang
ZhouQiang LiuFenggui BiswasAsim YangGuang LiaoZhihao |
Soggetto topico |
Natural disasters
Climatology Water Hydrology Forestry Atmospheric science Natural Hazards Climate Sciences Atmospheric Science |
ISBN |
9789819742141
9789819742134 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction -- Spatiotemporal Analysis and Impacts Assessment of Agricultural Drought in China -- Materials and Methodology -- Spatial and Temporal Variations of SPI and SSI -- Multivariate Frequency Analysis of Drought Events Using Drought Indices and Copula Functions in China -- Study Area and Data Source -- Drought Indices and Univariate Analysis -- Frequency Analysis Using 2-Variate Archimedean Copula -- Frequency Analysis Using 3-Variate Archimedean Copula -- Frequency Analysis Using Four-Variate Archimedean Copula -- Spatiotemporal Analysis and Impacts Assessment of Agricultural Drought in China -- Study Area and Data -- Drought Evolutions Over Different Land Cover Types -- The Response of Vegetation Phenology and Productivity to Extreme Climatic -- Drought Indices Performance for Predicting Agriculture Drought -- The Effects of Agricultural Drought on Crop Production -- Conclusions. |
Record Nr. | UNINA-9910878056103321 |
Li Yi | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|