Climate Change and Agrometeorology / / by Latief Ahmad, Asim Biswas, Jon Warland, Insha Anjum
| Climate Change and Agrometeorology / / by Latief Ahmad, Asim Biswas, Jon Warland, Insha Anjum |
| Autore | Ahmad Latief |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (226 pages) |
| Disciplina | 630.2515 |
| Altri autori (Persone) |
BiswasAsim
WarlandJon AnjumInsha |
| Soggetto topico |
Agriculture
Bioclimatology Climatology Human ecology - Study and teaching Climate Change Ecology Climate Sciences Environmental Studies |
| ISBN |
9789819948635
9819948630 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Preface -- About the Authors -- Chapter 1 Agricultural Meteorology: A Preview -- Chapter 2 Atmospheric Temperature -- Chapter 3 Atmospheric Pressure and Solar Radiation -- Chapter 4 Atmospheric Humidity -- Chapter 5 Microclimate and Climatic Normals -- Chapter 6 Weather Disasters and Management, Air Pollution and Role of Meteorology -- Chapter 7 Weather Forecasting -- Chapter 8 Climate Change Impact on Plants -- Chapter 9 Climate Change Effect on Fruit Production -- Chapter 10 Climate change Effect on Forests. |
| Record Nr. | UNINA-9910765488803321 |
Ahmad Latief
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Fundamentals and Applications of Crop and Climate Science / / by Latief Ahmad, Gazi Mohammad Shoaib Shah, Asim Biswas
| Fundamentals and Applications of Crop and Climate Science / / by Latief Ahmad, Gazi Mohammad Shoaib Shah, Asim Biswas |
| Autore | Ahmad Latief |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (272 pages) |
| Disciplina | 630 |
| Altri autori (Persone) |
ShahGazi Mohammad Shoaib
BiswasAsim |
| Soggetto topico |
Agronomy
Agriculture Soil science Bioclimatology Climatology Soil Science Climate Change Ecology Climate Sciences |
| ISBN | 3-031-61459-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1 Introduction -- Chapter 2 Soils -- Chapter 3 Plant Physiology -- Chapter 4 Crop Production Technology and Improvement -- Chapter 5 Weed Management -- Chapter 6 Water Management -- Chapter 7 Precision Agriculture -- Chapter 8 Remote Sensing, Geo and Agri Informatics -- Chapter 9 Protected Farming -- Chapter 10 Organic Farming and Sustainable Agriculture -- Chapter 11 Agrometeoreology -- Chapter 12 Climate Change and Agriculture. |
| Record Nr. | UNINA-9910886091503321 |
Ahmad Latief
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Handbook of Energy Management in Agriculture [[electronic resource] /] / edited by Amitava Rakshit, Asim Biswas, Deepranjan Sarkar, Vijay Singh Meena, Rahul Datta
| Handbook of Energy Management in Agriculture [[electronic resource] /] / edited by Amitava Rakshit, Asim Biswas, Deepranjan Sarkar, Vijay Singh Meena, Rahul Datta |
| Autore | Rakshit Amitava |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (767 pages) |
| Disciplina | 338.16 |
| Altri autori (Persone) |
BiswasAsim
SarkarDeepranjan MeenaVijay Singh DattaRahul |
| Soggetto topico |
Agriculture
Ecology Subsistence farming Subsistence Agriculture |
| ISBN | 981-19-7736-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Preface -- Acknowledgments -- Contents -- About the Editors -- Contributors -- Part I: Energy Requirement in the Agricultural Food Chain -- Carbon Footprint in Rice Cultivation -- 1 Introduction -- 2 Variation of C Footprint in Different Phenology of Rice Cultivation -- 2.1 Methane Emission and Paddy Growth Stages -- 2.2 The Life Cycle of Rice Production and Carbon Footprint -- 2.3 Assessment of Carbon Footprint in Rice Cultivation -- 3 Rice Straw Burning and C Footprint -- 4 Monitoring of GHG Emission: Methodology and Calculation -- 4.1 Measurement of Methane and Nitrous Oxide -- 5 Calculation of CH4 and N2O Flux -- 5.1 Measurement of Carbon Dioxide (CO2) -- 5.1.1 Alkali Trap Method -- 5.1.2 Soil Respirator -- 5.1.3 Long-Term Measuring Chamber -- 5.1.4 Temporary Portable Measuring Chamber -- 6 Agronomic Intervention to Reduce GHG Emission Under Rice Cultivation -- 6.1 Improved Irrigation Water Management -- 6.1.1 Alternate Wetting and Drying -- 6.1.2 Midseason Drainage -- 6.1.3 Drip Irrigation -- 6.1.4 Laser Land Leveling -- 7 Adaption of Best Nitrogen Management Techniques -- 7.1 Slow-Release Fertilizers -- 7.2 Urease Inhibitors -- 7.3 Nitrification Inhibitors -- 7.4 Urea Deep Placement -- 7.5 More Use of Organic Manures/Green Manures -- 7.6 4R Nutrient Stewardship Based N Application -- 8 Adaption of Improved Rice Production Technologies -- 9 Decision Support Tool -- 10 Soil and Nutrient Management to Reduce GHG Emission Under Rice Cultivation -- 10.1 Mitigating CH4 Emission -- 10.2 Mitigating N2O Emission -- 11 Future Roadmap for Carbon-Smart Rice Cultivation -- 12 Conclusion -- References -- Energy Requirements for Sustainable Sugarcane Cultivation -- 1 Introduction -- 1.1 Method of Energy Calculation -- 2 Operation-Wise Energy Footprints -- 2.1 Seedbed Preparation -- 2.2 Planting/Transplanting.
2.3 Weeding and Intercultural Operations -- 2.4 Irrigation -- 2.5 Fertilizer/Nutrient Management -- 2.6 Plant Protection -- 2.7 Harvesting -- 2.8 Residue Management and its Benefits -- 3 Source-Wise Energy -- 3.1 Overall Energy Assessment Based on the Category of Energy -- 3.2 Energy Indices -- 4 Future Pathway -- 4.1 Strategies for Energy Optimization -- 5 Conclusion -- References -- Carbon Footprint of Different Energy-Intensive Systems -- 1 Introduction -- 2 Agriculture as an Energy-Intensive System -- 3 Definition of Carbon Footprint -- 4 Why Carbon Footprinting? -- 5 Agriculture and Climate Change -- 6 Factors Contributing to Carbon Footprint of Different Systems in Agriculture -- 7 Use of Inorganic N Fertilizer -- 8 Fossil Fuels -- 9 Pesticide Use -- 10 Fuels -- 11 Waste and Water -- 12 Carbon Footprint Calculation -- 13 Carbon Footprint Calculations for Energy -- 14 Selection of Conversion Factors -- 15 Steps to Reduce Carbon Footprint -- 15.1 New Technologies to Reduce Enteric Fermentation -- 16 Cutting Emissions from Pasture Manure -- 17 Increase Nitrogen Use Efficiency to Reduce Fertilizer Emissions -- 18 Rice Management and Varieties That Reduce Emissions -- 19 Increasing Agricultural Energy Efficiency and Reducing Fossil Fuels -- 20 Concentrate on Practical Options for Carbon Sequestration in Soils -- 21 Reduction in Fertilizer Use and N2-Fixing Pulses to Lower Carbon Footprint -- 22 Conclusion -- References -- Carbon Footprint and Sustainability of Different Agricultural Production Systems in Climate Change Scenario -- 1 Introduction -- 2 Emission from Mechanical Operations -- 3 Emission from Irrigation -- 3.1 Emission from Fertilizer Use -- 4 Emission from Livestock -- 4.1 Methane-Reducing Feed Additives and Supplements -- 5 Carbon Efficiency and Carbon Intensity. 6 Efficient Farming Practices That Reduce Emissions from Crop Production -- 7 Scenario of Carbon Footprints in Major Food Crops -- 8 Conclusion -- References -- Energy Budgeting of Crops Under Rainfed Conditions -- 1 Introduction -- 2 Rainfed Ecology: A Fragile Ecology -- 2.1 Global Scenario -- 2.2 Rainfed Ecology in the Indian Context -- 2.3 Challenges Faced in Rainfed Ecology -- 2.4 Emerging Paradigm to Mitigate the Fragile Ecology -- 3 Energy Issue under Rainfed Agroecology -- 3.1 Intensification Processes -- 3.2 Soil Water/Moisture Stress -- 3.3 Genetic Resource Constraints -- 3.4 Soil/ Water Erosion -- 3.5 Nonjudicious/Rampant Use of Inorganic Fertilizers -- 3.6 Low Soil Organic Carbon Content -- 3.7 Low External Inputs -- 4 Energy Use, Dynamics, and Efficiency Under Different Crops -- 4.1 Farm Power Use Patterns -- 4.2 Energy Use Pattern -- 4.2.1 Crop Establishment Methods -- 4.2.2 Organic Farming -- 4.2.3 Conservation Agriculture -- 4.2.4 Energy Dynamics for Different Farm Operations -- Seedbed Preparation and Sowing -- Fertilizer Application -- Pesticide Application -- Irrigation -- Road Transport -- 4.2.5 Energy Dynamics Under Different Crops -- 4.2.6 Energy Analysis Parameters -- 5 Designing a Sustainable Solution for Energy Management -- 5.1 Farming Practices that Improve Energy Efficiency -- 5.1.1 Improved Fertilizer and Pesticide Use -- 5.1.2 Zero Tillage and Conservation Agriculture -- 5.1.3 Cultural or Ecological Practices -- 5.1.4 Tractors and Machinery Maintenance -- 5.2 Adoption of State-of-the-Art Technologies in Agriculture -- 5.2.1 Precision Agriculture -- 5.2.2 Use of Robotics -- 5.3 Production and Use of Renewable Energy for Farming Operations -- 6 Conclusions -- References -- Energy Use and Economic Evaluation Under Conservation and Organic Farming -- 1 Introduction. 1.1 Why Should Energy and Economic Budgeting Be Done for Farming System? -- 2 Farm-Level Economics of Conventional and Organic Farming -- 2.1 Direct Comparison Between Organic and Conventional Farms Based on Farm Input and Output Data -- 2.2 Modelling Comparisons of Organic and Conventional Farms -- 3 Comparison of Energy Budgets of Different Conventional and Organic Farming Production Systems -- 4 Farm-Level Energy Budgets of Conventional Farming and Organic Farming -- 5 Energy Budgeting of Conventional and Organic Farming -- 6 Economic Budgeting of Conventional and Organic Farming -- 7 Conclusions -- References -- Part II: Different Aspects/Concepts of Energy Efficiency and Management -- Agricultural Residue Management Using Forced Draft Gasifier Cookstove -- 1 Introduction -- 2 Methodology -- 2.1 Designing Parameters: Stove -- 2.1.1 Amount of Air and Energy Needed for Gasification (AFR) -- 2.1.2 Cooking Power and Fuel Burning Rate -- 2.1.3 Hearth Load and Fuel Storage Capacity -- 2.2 Description of the Gasifier Stove -- 2.3 Principle of Operation -- 2.4 Observations and Findings: TLUD Cookstove -- 3 Results and Discussion -- 3.1 Air Supply and Gas Concentrations -- 4 Conclusions -- References -- Biomass Energy from Agriculture -- 1 Introduction -- 2 Biomass Conversion Techniques -- 2.1 Direct Combustion -- 2.2 Thermochemical Conversion -- 2.2.1 Pyrolysis -- 2.2.2 Gasification -- 2.2.3 Carbonization -- 2.3 Chemical Conversion -- 2.4 Biochemical Conversion -- 2.4.1 Anaerobic Digestion -- 2.4.2 Methane Production in Landfills -- 2.4.3 Ethanol Fermentation -- 2.5 Densification Techniques -- 3 Indian Biomass Energy Conversion Policy -- 4 Conclusion -- References -- Biomass -- 1 Introduction -- 2 Biomass and Its Characteristics -- 3 Forms of Biofuels -- 3.1 Solid Biofuels -- 3.1.1 Briquetting -- 3.1.2 Charcoal -- 3.1.3 Biochar -- 3.2 Liquid Biofuels. 3.3 Gaseous Biofuels -- 4 Agricultural Biomass As Source of New Energy -- 4.1 Ethanol -- 4.1.1 History of Ethanol Production -- 4.1.2 Process of Ethanol Production -- 4.1.3 Benefits and Disadvantages in Ethanol Production -- 4.1.4 The Drawbacks of Ethanol Production and Use -- 4.1.5 Current Status and Potential of Ethanol Production in the World -- 4.1.6 Future Perspective in Its Production -- 4.1.7 Indian Case Study and Policy Measures -- 4.2 Biodiesel -- 4.2.1 History -- 4.2.2 Production Process -- 4.2.3 Extraction from Jatropha -- 4.2.4 Other Production Processes -- 4.2.5 Biodiesel Properties -- 4.2.6 Advantages of Biodiesel Use -- 4.2.7 Disadvantages of Biodiesel Use -- 5 Process of Biomass Conversion to Energy -- 5.1 Combustion -- 5.2 Thermochemical Conversion -- 5.2.1 Pyrolysis -- 5.2.2 Gasification -- 5.3 Chemical Conversion -- 6 Conclusion -- References -- Biomass Technologies for Crop Residue Management -- 1 Crop Residue Management Using Densification Techniques -- 2 Biomass Briquetting: Densification Technology for Agricultural Waste -- 3 Biomass Densification Technologies -- 4 Briquetting Process -- 4.1 Raw Materials Collection -- 4.2 Size Reduction of Raw Materials -- 4.2.1 Drying -- 4.2.2 Size Reduction -- 4.3 Raw Material Mixing -- 4.4 Compaction -- 4.5 Heat Reduction and Storage of Briquettes -- 5 Availability of Raw Materials -- 6 Factors Affecting Briquetting Process -- 7 Methods of Briquetting -- 8 Briquetting Technologies -- 9 Advantages of Briquettes -- 10 Application of Briquettes -- 11 Advantages -- 12 Basic Needs to Start a Briquette Production Unit -- 13 Pelletizing -- 14 Conclusion -- References -- Internet of Things (IoT) Framework to Support Sustainable Food Production -- 1 Introduction -- 2 Innovation in the Agricultural Sector -- 2.1 Green Revolution -- 2.2 Process Mechanization -- 2.3 Precision Agriculture. 2.4 Agriculture 4.0. |
| Record Nr. | UNINA-9910725098803321 |
Rakshit Amitava
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Smart Sensing Technologies for Agriculture
| Smart Sensing Technologies for Agriculture |
| Autore | Adamchuk Viacheslav I |
| Pubbl/distr/stampa | Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 |
| Descrizione fisica | 1 online resource (232 p.) |
| Soggetto topico | History of engineering and technology |
| Soggetto non controllato |
adaptive K-means
apparent electrical conductivity (ECa) autonomous robot body dimensions boundary-line broiler surface temperature extraction cation exchange capacity clay content convolutional neural networks crop protection cutting point detection deep learning droplet characterization elemental composition ellipse fitting feature recognition FFPH germination paper gripper harvesting robot head region locating infrared spectroscopy ion-selective electrode (ISE) Kalman filter Kd-network kinetic stereo imaging laser-induced breakdown spectroscopy law of minimum LIBS livestock lying posture machine vision mapping model predictive control moisture measurement multispectral imaging non-contact measurement on-site detection optical micro-sensors partial least squares (PLS) pH plant detection point cloud precision agriculture precision farming precision weeding principal component analysis (PCA) proximal soil sensing quantile regression quasi-3D inversion algorithm real-time measurement sandy infertile soil segmentation sensor fusion soil soil electrical resistivity soil moisture soil nitrate nitrogen (NO3−-N) soil nutrients soil testing spectroscopy standing posture thermal image processing Three-dimensional mapping transfer learning UAV willow tree X-ray fluorescence yield estimation |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910557667303321 |
Adamchuk Viacheslav I
|
||
| Basel, Switzerland, : MDPI - Multidisciplinary Digital Publishing Institute, 2020 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Spatiotemporal Dynamics of Meteorological and Agricultural Drought in China / / by Yi Li, Faliang Yuan, Qiang Zhou, Fenggui Liu, Asim Biswas, Guang Yang, Zhihao Liao
| Spatiotemporal Dynamics of Meteorological and Agricultural Drought in China / / by Yi Li, Faliang Yuan, Qiang Zhou, Fenggui Liu, Asim Biswas, Guang Yang, Zhihao Liao |
| Autore | Li Yi |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (250 pages) |
| Disciplina |
551
363.34 |
| Altri autori (Persone) |
YuanFaliang
ZhouQiang LiuFenggui BiswasAsim YangGuang LiaoZhihao |
| Soggetto topico |
Natural disasters
Climatology Water Hydrology Forestry Atmospheric science Natural Hazards Climate Sciences Atmospheric Science |
| ISBN |
9789819742141
9789819742134 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction -- Spatiotemporal Analysis and Impacts Assessment of Agricultural Drought in China -- Materials and Methodology -- Spatial and Temporal Variations of SPI and SSI -- Multivariate Frequency Analysis of Drought Events Using Drought Indices and Copula Functions in China -- Study Area and Data Source -- Drought Indices and Univariate Analysis -- Frequency Analysis Using 2-Variate Archimedean Copula -- Frequency Analysis Using 3-Variate Archimedean Copula -- Frequency Analysis Using Four-Variate Archimedean Copula -- Spatiotemporal Analysis and Impacts Assessment of Agricultural Drought in China -- Study Area and Data -- Drought Evolutions Over Different Land Cover Types -- The Response of Vegetation Phenology and Productivity to Extreme Climatic -- Drought Indices Performance for Predicting Agriculture Drought -- The Effects of Agricultural Drought on Crop Production -- Conclusions. |
| Record Nr. | UNINA-9910878056103321 |
Li Yi
|
||
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||