Beyond the Law: Living Blasphemy in Pakistan : Ethnography of Mundane Violence, Faith, and Lifeworlds / / by Muhammad Bilal
| Beyond the Law: Living Blasphemy in Pakistan : Ethnography of Mundane Violence, Faith, and Lifeworlds / / by Muhammad Bilal |
| Autore | Bilal Muhammad |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Cham : , : Springer Nature Switzerland : , : Imprint : Palgrave Macmillan, , 2024 |
| Descrizione fisica | 1 online resource (217 pages) |
| Disciplina | 218 |
| Collana | Contemporary Anthropology of Religion |
| Soggetto topico |
Anthropology of religion
Ethnology Middle East - Politics and government Islam Anthropology of Religion Sociocultural Anthropology Middle Eastern Politics |
| ISBN |
9783031710292
3031710290 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Chapter 1 - Introduction -- Chapter 2 - Finding Religion in Everyday Life - How Lifeworlds Work in Pakistan -- Chapter 3 - What is Blasphemy? Perspectives of Ordinary Pakistani Muslims -- Chapter 4 - Mob Vigilantism? Outlooks on Religious Violence, Torture, and Killings -- Chapter 5 - Virtual Negotiation of Sacredness and Rise of Digital Blasphemy -- Chapter 6. Epilogue: Is There a Solution to Blasphemy Problem: Answers Beyond the Law. |
| Record Nr. | UNINA-9910897980403321 |
Bilal Muhammad
|
||
| Cham : , : Springer Nature Switzerland : , : Imprint : Palgrave Macmillan, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Genomics Approach to Bioremediation : Principles, Tools, and Emerging Technologies
| Genomics Approach to Bioremediation : Principles, Tools, and Emerging Technologies |
| Autore | Bilal Muhammad |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2023 |
| Descrizione fisica | 1 online resource (563 pages) |
| Altri autori (Persone) |
Romanholo FerreiraLuiz Fernando
IqbalHafiz M. N KumarVineet |
| ISBN |
9781119852117
9781119852100 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- About the Editors -- List of Contributors -- Preface -- Acknowledgments -- Part 1 Fundamentals of Metagenomics and Bioremediation -- Chapter 1 Application of Bioremediation for Environmental Clean-Up: Issues, Recent Developments, and the Way Forward -- 1.1 Introduction -- 1.2 Bioremediation: A Sustainable Approach -- 1.2.1 In-Situ Bioremediation -- 1.2.2 Ex-Situ Bioremediation -- 1.3 Importance of Vegetation for Bioremediation -- 1.4 Application of Bioremediation to Clean Up Environmental Pollutants -- 1.4.1 Heavy Metals -- 1.4.2 Agrochemicals -- 1.5 Advantages and Disadvantages of Bioremediation Technology -- 1.6 Recent Advancements in Bioremediation Technology -- 1.7 Conclusion -- References -- Chapter 2 Omics in Biomethanation and Environmental Remediation -- 2.1 Introduction -- 2.2 Feedstocks Used -- 2.2.1 Biogas from the Sludge and Manure -- 2.2.2 Biogas from Solid Waste (MSW) -- 2.2.3 Food and Drink Waste used for Digestion -- 2.2.4 Feedstock from Agricultural Wastes -- 2.2.5 Biogas Yields and Feedstock Productivity -- 2.3 Microbiology and Biochemical Reactions in Anaerobic Digestions -- 2.3.1 Biochemistry in Anaerobic Digestion of Feedstock -- 2.4 Omics in Biomethanation and BiorRemediation -- 2.4.1 Bacterial and Archaeal Community Sequencing -- 2.4.2 PHA Screening for Production -- 2.4.3 Microbial Degradation of PHA -- 2.4.4 Proteomics Study on Kraft Lignin -- 2.4.5 Lignin/Aromatic Compound Degradation Proteins Expressed on Kraft Lignin -- 2.4.6 Other Significant Proteins Expressed on KL -- 2.4.7 Pathways for the Utilization of Lignin and PHA Metabolism -- 2.5 Role of Factors in Anaerobic Digestions in Biomethanation -- 2.5.1 Temperature -- 2.5.2 Redox Potential -- 2.5.3 C:N Ratio and Ammonium Inhibition -- 2.5.4 pH -- 2.6 Inhibitory Substances for Anaerobic Digestion.
2.7 Degradation and Bioremediation of Toxic Compounds for Enhanced Production of Biomethanation -- 2.7.1 Degradation of Lignin in the Process of Digestion -- 2.7.2 Degradation of Others -- 2.8 Circular Economy Perspective in Biogas Production -- 2.9 Conclusion -- References -- Chapter 3 Enzyme Immobilization: An Effective Platform to Improve the Reusability and Catalytic Efficiency of Enzymes -- 3.1 Introduction -- 3.2 Immobilization of Enzymes -- 3.3 Aspects Affecting the Performance of Immobilized Enzyme -- 3.3.1 Support Material -- 3.3.2 Organic Materials -- 3.3.3 Inorganic Materials -- 3.3.4 Immobilization Methods -- 3.3.5 Operation Conditions -- 3.4 Factors Contributing Toward the Immobilized Enzyme Activity Enhancement -- 3.4.1 Enzyme Inhibition Control -- 3.4.2 Enzyme Structure Rigidification -- 3.4.3 Medium and Substrate/Product Partition Effect -- 3.4.4 Soluble Enzyme Aggregation -- 3.4.5 Diffusional Limitations -- 3.4.6 More Active Conformation Retention -- 3.4.7 Co-immobilization -- 3.5 Immobilized Enzyme Applications -- 3.6 Conclusion -- References -- Chapter 4 Biostimulation and Bioaugmentation: Case Studies -- 4.1 Introduction -- 4.2 Biostimulation -- 4.3 Bioagumentation -- 4.3.1 Cell (Microorganism) Bioaugmentation (c-BA) -- 4.3.2 Factors Impacting Bioaugmentation -- 4.3.3 Gene Bioaugmentation (g-BA) -- 4.4 Commercially Available Bioremediation Agents -- 4.5 Conclusions -- References -- Chapter 5 Plant Microbe Synergism for Arsenic Stress Amelioration in Crop Plants -- 5.1 Introduction -- 5.2 Distribution of Arsenic in Soil and Water -- 5.2.1 Arsenic in Water -- 5.2.2 Arsenic in Soil -- 5.3 Methods of Arsenic Remediation -- 5.3.1 Physical Remediation -- 5.3.2 Chemical Remediation -- 5.4 Arsenic-Induced Toxicity in Crop Plants -- 5.5 Arsenic Remediation Through Mineral Fertilization -- 5.5.1 Application of Iron (Fe). 5.5.2 Application of Phosphorus -- 5.5.3 Application of Silicon -- 5.5.4 Application of Sulfur -- 5.5.5 Application of Zinc -- 5.6 Bioremediation -- 5.6.1 Phytoremediation of Heavy Metals -- 5.6.2 Micro-Remediation of As -- 5.6.3 Mechanism of As Micro-Remediation -- 5.7 Plant-Microbe Interaction and Their Role in Reducing As Toxicity in Crop Plants -- 5.7.1 Phosphate Solubilization -- 5.7.2 Silicon (Si) Solubilization -- 5.7.3 Auxin Production -- 5.7.4 Siderophore Production -- 5.7.5 Aminoacyclopropane-1-Carboxylate (ACC) Deaminase Production -- 5.7.6 Exopolysaccharide (EPS) Production -- 5.8 Plant-Microbe Interaction as a Boon for Arsenic Remediation -- 5.9 Microbial Methylation of Arsenic in Soil and its Reduced Uptake in Plants -- 5.10 Conclusion -- References -- Chapter 6 Metagenomic Characterization and Applications of Microbial Surfactants in Remediation of Potentially Toxic Heavy Metals for Environmental Safety: Recent Advances and Challenges -- 6.1 Introduction -- 6.2 Biosurfactants' Characteristics -- 6.2.1 Surface and Interface Activity -- 6.2.2 Temperature and pH Tolerance -- 6.2.3 Biodegradability -- 6.2.4 Low Toxicity -- 6.2.5 Antiadhesive Agent -- 6.2.6 Emulsion Formation Breaking -- 6.3 Classification of Biosurfactants -- 6.3.1 Classification Based on Molecular Weight -- 6.3.2 Classification Based on Chemical Structure -- 6.4 Screening of Microorganisms for Biosurfactants Production -- 6.4.1 Hemolytic Activity -- 6.4.2 Drop Collapsing Test -- 6.4.3 Oil Spreading Test -- 6.4.4 Emulsification Index Test -- 6.4.5 Blue Agar Plate or CTAB Agar Plate Method -- 6.4.6 Hydrocarbon Overlay Agar Method -- 6.4.7 Axisymmetric Drop Shape Analysis (ADSA) -- 6.4.8 Cell Surface Hydrophobicity Technique -- 6.4.9 Tensiometeric Measurement of SFT -- 6.4.10 Tilted Glass Slide Test -- 6.4.11 Direct Colony-Thin Layer Chromatographic (TLC) Technique. 6.5 Metagenomic Characterization of Biosurfactant-Producing Microorganisms -- 6.6 Biosynthesis of Biosurfactants -- 6.6.1 Glycolipid Biosurfactants -- 6.6.2 Lipopeptide Biosurfactants -- 6.6.3 HMW Biosurfactants/Bioemulsifiers (BS/BE) -- 6.7 Characterization of Biosurfactants -- 6.7.1 Thin-Layer Chromatography (TLC) -- 6.7.2 High-Pressure Liquid Chromatography (HPLC) -- 6.7.3 Gas Chromatography (GC) and Mass Spectroscopy (MS) -- 6.7.4 Infrared (IR) Spectroscopy -- 6.7.5 Nuclear Magnetic Resonance (NMR) -- 6.7.6 Fast Atom Bombardment-Mass Spectroscopy (FAB-MS) -- 6.8 Factors Influencing Biosurfactants Production -- 6.8.1 Carbon Sources -- 6.8.2 Nitrogen Source -- 6.8.3 Natural Elements -- 6.8.4 Salt Concentration -- 6.8.5 Aeration and Agitation -- 6.9 Applications of Biosurfactants in Heavy Metals Environmental Remediation -- 6.10 Challenges in Cost-Effective Production of Biosurfactants -- 6.11 Future Research Needs -- 6.12 Conclusions -- References -- Part 2 Metagenomics in Environmental Cleanup -- Chapter 7 Metagenomic Approaches Applied to Bioremediation of Xenobiotics -- 7.1 Introduction -- 7.2 Metagenomic Approaches in Bioremediation Processes -- 7.3 Metagenomics in the Hydrocarbon Degradation -- 7.4 Metagenomic Approaches in the Drugs Degradation -- 7.5 Metagenomic Approaches in the Dye Degradation -- 7.6 Metagenomic Approaches in the Pesticides Degradation -- 7.7 Metagenomics in Heavy Metal Biorremediation -- References -- Chapter 8 Omics Approaches for Microalgal Applications in Wastewater Treatment -- 8.1 Introduction -- 8.2 Concept on Microalgal Biofilms -- 8.2.1 Cultivation -- 8.2.2 Composition -- 8.2.3 Applications -- 8.3 Factors Influencing Nutrient Extraction and Microalgal Growth -- 8.4 Mechanism of Microalgal Remediation -- 8.4.1 Nutrient Uptake -- 8.4.2 Heavy Metal Extraction/Uptake -- 8.4.3 Removal of Coliform Bacteria. 8.4.4 Removal of Organic Pollutants -- 8.5 Multi-Omics Approach -- 8.5.1 Genomics -- 8.5.2 Metagenomics -- 8.5.3 Transcriptomics -- 8.5.4 Meta-transcriptomics -- 8.5.5 Proteomics -- 8.5.6 Meta-proteomics -- 8.5.7 Metabolomics -- 8.6 Conclusion -- References -- Chapter 9 Microbial Community Profiling in Wastewater of Effluent Treatment Plant -- 9.1 Source of Wastewater -- 9.2 Wastewater Treatment Plant -- 9.3 Wastewater Treatment Facilities Have a Wide Range of Microbial Diversity -- 9.4 Microbial Composition in WWTPs -- 9.4.1 Varieties of Bacterial Communities -- 9.5 Screening, Selection, and Identification of Microbial Communities -- 9.5.1 Chemotaxonomy-Based Direct Monitoring Methods -- 9.5.2 Monitoring Approaches Based on rRNA -- 9.5.3 Hybridization Methods -- 9.5.4 16S rRNA Sequencing in Wastewater Treatment and Water Quality Monitoring -- 9.5.5 Metagenomic Analysis -- 9.5.6 Next Generation Sequencing (NGS) Technology -- 9.5.7 Microbial Community Analysis by Metatranscriptomics and Metaproteomics -- 9.5.8 Metabolomic Analysis of Microbial Community -- 9.5.9 Approach Based on Marker-Gene -- 9.5.10 Pyrosequencing Technology -- 9.6 Health Problem for Wastewater Treatment Employees -- 9.6.1 Hydrogen Sulfide's Negative Consequences -- 9.6.2 Musculoskeletal Disorders -- 9.6.3 Leptospirosis -- 9.6.4 Hepatitis -- 9.6.5 Helicobacter pylori -- 9.7 Conclusion -- 9.8 Future Prospective -- References -- Chapter 10 Mining of Novel Microbial Enzymes Using Metagenomics Approach for Efficient Bioremediation: An Overview -- 10.1 Introduction -- 10.2 Omics for Microbial Enzymes in Bioremediation -- 10.2.1 Omics for Sequencing Microbial Diversity: The Early Era (Figure 10.1) -- 10.2.2 High Throughput Sequencing and Advances in Omics -- 10.3 Implementing Metagenomics for Énvironmental Remediations -- 10.3.1 Sequence-Based Metagenomics in Bioremediation. 10.3.2 Activity-Based Metagenomics for Remediation (Figure 10.2). |
| Record Nr. | UNINA-9910646198403321 |
Bilal Muhammad
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||