top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Aquatic environmental bioengineering : monitoring and remediation of contamination / / Rouf Ahmad Bhat, [and three others]
Aquatic environmental bioengineering : monitoring and remediation of contamination / / Rouf Ahmad Bhat, [and three others]
Autore Bhat Rouf Ahmad <1981->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (240 pages)
Disciplina 628.162
Soggetto topico Water - Purification
ISBN 9781119760979
9781119760962
9781119760955
1-119-76097-6
1-119-76096-8
9781119760948
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Aquatic Environmental Bioengineering -- Contents -- Preface -- About the Authors -- 1 Emerging Pollutants Remediation Water Systems: Biomass-Based Technologies -- 1.1 Introduction -- 1.2 Adsorption-Based Remediation -- 1.2.1 Biomass -- 1.2.2 Terrestrial and Marine Bioresources -- 1.2.3 Agro-Industrial Wastes -- 1.2.4 Activated Carbons (ACs) 1.2.5 Bioresources -- 1.2.6 Agro-Industrial Wastes -- 1.2.7 Activated Sludge (AS) -- 1.3 Bioremediation -- 1.3.1 Phytoremediation -- 1.3.2 Constructed Wetlands (CWs) -- 1.3.3 Microbial Remediation -- 1.3.4 Biocoagulants and Bioflocculants -- 1.4 Multi-Element Water Treatment Process -- 1.4.1 Membrane Bioreactors (MBRs): Biodegradation and Membrane Filtration -- 1.4.2 Activated Carbon and Ozone -- 1.5 Views and Recommendations -- 1.6 Conclusion -- 2 Genetic Engineering for Metal Tolerance and Accumulation -- 2.1 Introduction -- 2.2 Mechanisms of Metal Uptake and Their Transport in Plants -- 2.2.1 Heavy Metals Tolerance (Mechanism) in Plants -- 2.2.2 Mechanisms of Avoidance in Plants -- 2.2.3 Binding of Metal to the Cell Wall -- 2.2.4 Mechanisms of Tolerance in Plants -- 2.3 Phytoremediation Using Genetic Engineering Stress-Tolerant Plants -- 2.3.1 Selenium Accumulation by Plants -- 2.3.2 Genetics of Plants Selenium Accumulation -- 2.3.3 Proteins for Metal Accumulation -- 2.4 Genetically Modified Plants Against Uptake, Tolerance and Detoxification of Heavy Metals -- 2.5 Cadmium Tolerance and Accumulation Mechanisms in Plants -- 2.5.1 Immobilization -- 2.5.2 Chelation Using Organic Acids and Amino Acids -- 2.5.3 Stress Peptide Synthesis -- 2.5.4 Cd Transporters -- 2.5.5 Genetic Analysis of Cadmium Tolerance and Accumulation in Plants -- 2.6 Heavy Metal ATPases (HMA) -- 3 Transgenic Approaches for Field Testing and Risk Assessment -- 3.1 Introduction -- 3.2 Transgenic Plants for Environmental Remediation.
3.3 Degradation Pathways in Plants -- 3.4 Cytochrome P450s for Environmental Perspectives -- 3.5 Transgenic Plants for the Rhizoremediation of Organic Xenobiotics -- 3.6 Transgenic Plants to be Developed for the Phytoremediation of Some Other Priority Pollutants -- 3.7 Potential Genes for Phytoremediation -- 3.8 Hitting Transgenics to the Assessment: Plant Bioremediation -- 3.9 Potential Risks -- 3.9.1 Risk Assessment Theories and Practices -- 3.9.2 Contests Aimed at Multifaceted Risk Valuation -- 3.10 Future Research Guidelines -- 4 Role of RS and GIS in Water Quality Monitoring and Remediation -- 4.1 Introduction -- 4.2 Scope of RS and GIS in Water Monitoring -- 4.3 Assessment of Certain Impurities in Water with the Aid of RS and GIS -- 4.3.1 Suspended Load -- 4.3.2 Phytoplankton -- 4.3.3 Turbidity -- 4.4 Benefits of RS in Assessment of Water Quality -- 4.4.1 Soil Moisture Mapping for Floods and Droughts -- 4.4.2 Spatially Distributed Crop Water Use Estimation -- 4.4.3 Surface Water Quality Monitoring and Remediation -- 4.4.4 Groundwater Quality Monitoring and Remediation -- 4.5 Future Prospectus of RS and GIS Applications in Water Quality Studies -- 5 Advancement on Bioaugmentation -- 5.1 Introduction -- 5.2 Present Disposal Techniques and Their Limitations -- 5.3 Bioaugmentation as an Emerging Strategy -- 5.3.1 Bioaugmentation Principle -- 5.3.2 Cell Bioaugmentation -- 5.3.3 Biological Augmentation as a Tool for Improving the Wastewater Treatment Efficiency -- 5.3.4 Role of Bioaugmentation in Removing Recalcitrant Pollutants from Industrial Wastewater -- 5.4 Bioaugmentation Applications -- 5.4.1 Removal of Compounds -- 5.4.2 Removal of Lignin -- 5.4.3 Pyridine and Quinoline -- 5.4.4 Cyanides -- 5.4.5 Nicotine -- 5.5 Bioaugmentation Technologies and Their Limitations -- 5.5.1 Grazing of Protozoans -- 5.5.2 Inoculum Size.
5.5.3 Bacteriophage Infection -- 5.6 Strategies for Improving the Effectiveness of Bioaugmentation -- 5.6.1 Immobilizing the Cells in Bioaugmentation -- 5.6.2 Quorum Sensing -- 5.6.3 Gene Transfer and Genetically Modified Microorganisms -- 5.7 Bioaugmentation and Nanotechnology -- 5.8 Future Prospects -- 5.9 Conclusion -- 6 Photocatalysis in Relation to Water Remediation -- 6.1 Introduction -- 6.2 Characteristics of Material -- 6.2.1 Homogeneous Photocatalysis -- 6.2.2 Heterogeneous Photocatalysis -- 6.3 Consequence of Ultra Violet/Titanium Dioxide/ Hydrogen Peroxide -- 6.3.1 Chlorophenol -- 6.3.2 2,4-Dichlorophenol -- 6.3.3 2,4,6-Trichlorophenol -- 6.4 Obstacles for Applicability -- 6.4.1 Advancement of Photocatalytic Materials -- 6.4.2 Photocatalytic Reactor Design and System Evaluation -- 6.5 Strategies for Improving Research Outcomes -- 7 Biochemical Systems -- 7.1 Introduction -- 7.2 Cathodic Catalysis in BES and Implications for Catalyst Design -- 7.2.1 Cathodic Catalysis Characteristic in BES -- 7.2.2 Operation Environment -- 7.2.3 Wastewater Electrolyte -- 7.2.4 Cathode Over-Potential and Catalysis in BES -- 7.2.5 Photo-aided Cathodic Catalysis -- 7.3 Wastewater Treatment -- 7.3.1 Highly Biodegradable Wastewater -- 7.3.2 Complex/Low Biodegradable Wastewater -- 7.3.3 Integrated Process for Additional Treatment -- 7.4 Current Bottlenecks and Challenges for BES -- 7.5 Future Directions -- 8 Nanotechnology: Environmental Sustainable Solutions for Wastewater Treatment -- 8.1 Introduction -- 8.2 Water Nanotechnology -- 8.2.1 Adsorption and Separation -- 8.2.2 Catalysis -- 8.2.3 Disinfection -- 8.2.4 Sensing -- 8.2.5 Carbon-Based Nanoadsorbents -- 8.2.6 Metal-Based Nanoadsorbents -- 8.2.7 Polymer-Based Nanoadsorbents -- 8.3 Zeolites -- 8.4 Magnetic Nanocomposites -- 8.5 Nano Zero Valent Iron (nZVI) -- 8.6 Biosorbents.
8.7 Treatment of Wastewater by Means of MembraneBased Techniques -- 8.8 Nanoparticles for Microbial Control and Disinfection -- 8.9 Antimicrobial Action of Nanoparticles -- 8.10 Potential Applications in Wastewater Treatment -- 8.11 Benefits of Nano-Biotechnology-Based Applications for Water Sustainability -- 8.12 Challenges and Future Outlook -- 9 Biotechnology Intercession in Phytoremediation -- 9.1 Introduction -- 9.2 Genetically Engineered Plants and Phytoremediation -- 9.3 Qualitative Phytoremediators -- 9.4 Biotechnology in Plant Mediated Remediation for Contaminants -- 9.5 Toxic Metals (TMs) -- 9.5.1 Arsenic (As) -- 9.5.2 Mercury (Hg) -- 9.5.3 Organic Pollutants (OPs) -- 9.5.4 Pesticides -- 9.5.5 Oil Spills (OSs) -- 9.6 Conclusion and Future Prospects -- 10 Biofilms in Remediation -- 10.1 Introduction -- 10.2 Different Methods for Culturing Biofilms In Vitro -- 10.2.1 Static Microtiter Plate Assays -- 10.2.2 Tube Biofilms -- 10.2.3 Colony Biofilms -- 10.3 Biofilm Growth on Peg Lids -- 10.4 Rotating Disk and Concentric Cylinder Reactors -- 10.5 Methods for Characterization of Biofilms -- 10.5.1 Confocal Laser Scanning Microscopy (CLSM) -- 10.5.2 Scanning Electron Microscopy (SEM) -- 10.5.3 Atomic Force Microscopy (AFM) -- 10.5.4 Infrared and Raman Spectroscopy -- 10.5.5 X-ray Spectroscopy -- 10.5.6 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 10.6 Biofilm-Based Bioremediation -- 10.7 Nitrogen Fixing Microorganisms in Lakes -- 10.8 Conclusion -- 11 Graphene-Based Absorbents for Wastewater Treatment -- 11.1 Introduction -- 11.2 Graphene-Based Materials -- 11.3 Graphene-Polymer Composites -- 11.4 Applications of Graphene as an Adsorbent in Water Remediation -- 11.4.1 Polycyclic Aromatic Hydrocarbons (PAHs) -- 11.4.2 Phenolic Compounds -- 11.4.3 Pharmaceutical Compounds -- 11.4.4 Pesticides -- 11.4.5 Dyes -- 11.5 Future Scope.
12 Sewage Sludge -- 12.1 Introduction -- 12.2 Characteristics of Sewage Sludge -- 12.3 Activation of Sewage Sludge -- 12.4 Disposal of Sludge to Land -- 12.5 The Effect of Sludge Application on Soil Properties -- 12.5.1 Physico-Chemical Properties -- 12.5.2 Microbial Parameters of Soil -- 12.5.3 Concentration of Nutrients and the Heavy Metals in Sewage Sludge and Soil -- 12.6 Outlines of Nutrients and Harmful Metals in Sludge and Soil -- 12.7 The Accumulation of Nutrients by Crops -- 12.8 Future Views -- 13 Microbial Fuel Cells for the Treatment of Wastewater -- 13.1 Introduction -- 13.2 Biochemical Sustenance of Microbes -- 13.3 Functioning of MFCs -- 13.3.1 Uses of MFCs -- 13.3.2 Wastewater Treatment -- 13.3.3 Power Supply to Underwater Monitoring Devices -- 13.3.4 Power Supply to Remote Sensors -- 13.3.5 BOD Sensing -- 13.3.6 Hydrogen Manufacture -- 13.4 Microbial Fuel Cells Treatment of Wastewater -- 13.5 Microbial Fuel Cell Design -- 13.6 Construction of MFCs -- 13.6.1 Two Cell MFCs -- 13.6.2 Single Compartment MFCs -- 13.7 MFCs and Wastewater Remediation -- 13.7.1 Microbial Fuel Cells for Wastewater Treatment and Energy Generation -- 13.7.2 Treatment of Sewage and Electricity Production by Microbial Fuel Cells -- 13.7.3 Advanced MFCs for Wastewater Treatment -- 13.8 Wastewater Treatment by MFCs Coupled with Peroxicoagulation Process -- 13.9 MFCs and Generation of Bioelectricity -- 13.10 Electricigens in the MFCs -- 13.11 Future Prospects -- 13.12 Conclusion -- 14 Water Resources Planning and Management Paradigm Decision-Making -- 14.1 Introduction -- 14.2 Freshwater Stress -- 14.3 Globalization -- 14.4 Disparity in Supply and Demand -- 14.5 Planning and Management Approaches -- 14.5.1 Top-Down Approach -- 14.5.2 Bottom-Up Approach -- 14.6 Integrated Water Resources Management.
14.7 Water Management and Planning: Goals, Strategies, Decisions, and Scenarios.
Record Nr. UNINA-9910573100703321
Bhat Rouf Ahmad <1981->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Aquatic environmental bioengineering : monitoring and remediation of contamination / / Rouf Ahmad Bhat, [and three others]
Aquatic environmental bioengineering : monitoring and remediation of contamination / / Rouf Ahmad Bhat, [and three others]
Autore Bhat Rouf Ahmad <1981->
Pubbl/distr/stampa Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Descrizione fisica 1 online resource (240 pages)
Disciplina 628.162
Soggetto topico Water - Purification
ISBN 1-119-76095-X
1-119-76097-6
1-119-76096-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Aquatic Environmental Bioengineering -- Contents -- Preface -- About the Authors -- 1 Emerging Pollutants Remediation Water Systems: Biomass-Based Technologies -- 1.1 Introduction -- 1.2 Adsorption-Based Remediation -- 1.2.1 Biomass -- 1.2.2 Terrestrial and Marine Bioresources -- 1.2.3 Agro-Industrial Wastes -- 1.2.4 Activated Carbons (ACs) 1.2.5 Bioresources -- 1.2.6 Agro-Industrial Wastes -- 1.2.7 Activated Sludge (AS) -- 1.3 Bioremediation -- 1.3.1 Phytoremediation -- 1.3.2 Constructed Wetlands (CWs) -- 1.3.3 Microbial Remediation -- 1.3.4 Biocoagulants and Bioflocculants -- 1.4 Multi-Element Water Treatment Process -- 1.4.1 Membrane Bioreactors (MBRs): Biodegradation and Membrane Filtration -- 1.4.2 Activated Carbon and Ozone -- 1.5 Views and Recommendations -- 1.6 Conclusion -- 2 Genetic Engineering for Metal Tolerance and Accumulation -- 2.1 Introduction -- 2.2 Mechanisms of Metal Uptake and Their Transport in Plants -- 2.2.1 Heavy Metals Tolerance (Mechanism) in Plants -- 2.2.2 Mechanisms of Avoidance in Plants -- 2.2.3 Binding of Metal to the Cell Wall -- 2.2.4 Mechanisms of Tolerance in Plants -- 2.3 Phytoremediation Using Genetic Engineering Stress-Tolerant Plants -- 2.3.1 Selenium Accumulation by Plants -- 2.3.2 Genetics of Plants Selenium Accumulation -- 2.3.3 Proteins for Metal Accumulation -- 2.4 Genetically Modified Plants Against Uptake, Tolerance and Detoxification of Heavy Metals -- 2.5 Cadmium Tolerance and Accumulation Mechanisms in Plants -- 2.5.1 Immobilization -- 2.5.2 Chelation Using Organic Acids and Amino Acids -- 2.5.3 Stress Peptide Synthesis -- 2.5.4 Cd Transporters -- 2.5.5 Genetic Analysis of Cadmium Tolerance and Accumulation in Plants -- 2.6 Heavy Metal ATPases (HMA) -- 3 Transgenic Approaches for Field Testing and Risk Assessment -- 3.1 Introduction -- 3.2 Transgenic Plants for Environmental Remediation.
3.3 Degradation Pathways in Plants -- 3.4 Cytochrome P450s for Environmental Perspectives -- 3.5 Transgenic Plants for the Rhizoremediation of Organic Xenobiotics -- 3.6 Transgenic Plants to be Developed for the Phytoremediation of Some Other Priority Pollutants -- 3.7 Potential Genes for Phytoremediation -- 3.8 Hitting Transgenics to the Assessment: Plant Bioremediation -- 3.9 Potential Risks -- 3.9.1 Risk Assessment Theories and Practices -- 3.9.2 Contests Aimed at Multifaceted Risk Valuation -- 3.10 Future Research Guidelines -- 4 Role of RS and GIS in Water Quality Monitoring and Remediation -- 4.1 Introduction -- 4.2 Scope of RS and GIS in Water Monitoring -- 4.3 Assessment of Certain Impurities in Water with the Aid of RS and GIS -- 4.3.1 Suspended Load -- 4.3.2 Phytoplankton -- 4.3.3 Turbidity -- 4.4 Benefits of RS in Assessment of Water Quality -- 4.4.1 Soil Moisture Mapping for Floods and Droughts -- 4.4.2 Spatially Distributed Crop Water Use Estimation -- 4.4.3 Surface Water Quality Monitoring and Remediation -- 4.4.4 Groundwater Quality Monitoring and Remediation -- 4.5 Future Prospectus of RS and GIS Applications in Water Quality Studies -- 5 Advancement on Bioaugmentation -- 5.1 Introduction -- 5.2 Present Disposal Techniques and Their Limitations -- 5.3 Bioaugmentation as an Emerging Strategy -- 5.3.1 Bioaugmentation Principle -- 5.3.2 Cell Bioaugmentation -- 5.3.3 Biological Augmentation as a Tool for Improving the Wastewater Treatment Efficiency -- 5.3.4 Role of Bioaugmentation in Removing Recalcitrant Pollutants from Industrial Wastewater -- 5.4 Bioaugmentation Applications -- 5.4.1 Removal of Compounds -- 5.4.2 Removal of Lignin -- 5.4.3 Pyridine and Quinoline -- 5.4.4 Cyanides -- 5.4.5 Nicotine -- 5.5 Bioaugmentation Technologies and Their Limitations -- 5.5.1 Grazing of Protozoans -- 5.5.2 Inoculum Size.
5.5.3 Bacteriophage Infection -- 5.6 Strategies for Improving the Effectiveness of Bioaugmentation -- 5.6.1 Immobilizing the Cells in Bioaugmentation -- 5.6.2 Quorum Sensing -- 5.6.3 Gene Transfer and Genetically Modified Microorganisms -- 5.7 Bioaugmentation and Nanotechnology -- 5.8 Future Prospects -- 5.9 Conclusion -- 6 Photocatalysis in Relation to Water Remediation -- 6.1 Introduction -- 6.2 Characteristics of Material -- 6.2.1 Homogeneous Photocatalysis -- 6.2.2 Heterogeneous Photocatalysis -- 6.3 Consequence of Ultra Violet/Titanium Dioxide/ Hydrogen Peroxide -- 6.3.1 Chlorophenol -- 6.3.2 2,4-Dichlorophenol -- 6.3.3 2,4,6-Trichlorophenol -- 6.4 Obstacles for Applicability -- 6.4.1 Advancement of Photocatalytic Materials -- 6.4.2 Photocatalytic Reactor Design and System Evaluation -- 6.5 Strategies for Improving Research Outcomes -- 7 Biochemical Systems -- 7.1 Introduction -- 7.2 Cathodic Catalysis in BES and Implications for Catalyst Design -- 7.2.1 Cathodic Catalysis Characteristic in BES -- 7.2.2 Operation Environment -- 7.2.3 Wastewater Electrolyte -- 7.2.4 Cathode Over-Potential and Catalysis in BES -- 7.2.5 Photo-aided Cathodic Catalysis -- 7.3 Wastewater Treatment -- 7.3.1 Highly Biodegradable Wastewater -- 7.3.2 Complex/Low Biodegradable Wastewater -- 7.3.3 Integrated Process for Additional Treatment -- 7.4 Current Bottlenecks and Challenges for BES -- 7.5 Future Directions -- 8 Nanotechnology: Environmental Sustainable Solutions for Wastewater Treatment -- 8.1 Introduction -- 8.2 Water Nanotechnology -- 8.2.1 Adsorption and Separation -- 8.2.2 Catalysis -- 8.2.3 Disinfection -- 8.2.4 Sensing -- 8.2.5 Carbon-Based Nanoadsorbents -- 8.2.6 Metal-Based Nanoadsorbents -- 8.2.7 Polymer-Based Nanoadsorbents -- 8.3 Zeolites -- 8.4 Magnetic Nanocomposites -- 8.5 Nano Zero Valent Iron (nZVI) -- 8.6 Biosorbents.
8.7 Treatment of Wastewater by Means of MembraneBased Techniques -- 8.8 Nanoparticles for Microbial Control and Disinfection -- 8.9 Antimicrobial Action of Nanoparticles -- 8.10 Potential Applications in Wastewater Treatment -- 8.11 Benefits of Nano-Biotechnology-Based Applications for Water Sustainability -- 8.12 Challenges and Future Outlook -- 9 Biotechnology Intercession in Phytoremediation -- 9.1 Introduction -- 9.2 Genetically Engineered Plants and Phytoremediation -- 9.3 Qualitative Phytoremediators -- 9.4 Biotechnology in Plant Mediated Remediation for Contaminants -- 9.5 Toxic Metals (TMs) -- 9.5.1 Arsenic (As) -- 9.5.2 Mercury (Hg) -- 9.5.3 Organic Pollutants (OPs) -- 9.5.4 Pesticides -- 9.5.5 Oil Spills (OSs) -- 9.6 Conclusion and Future Prospects -- 10 Biofilms in Remediation -- 10.1 Introduction -- 10.2 Different Methods for Culturing Biofilms In Vitro -- 10.2.1 Static Microtiter Plate Assays -- 10.2.2 Tube Biofilms -- 10.2.3 Colony Biofilms -- 10.3 Biofilm Growth on Peg Lids -- 10.4 Rotating Disk and Concentric Cylinder Reactors -- 10.5 Methods for Characterization of Biofilms -- 10.5.1 Confocal Laser Scanning Microscopy (CLSM) -- 10.5.2 Scanning Electron Microscopy (SEM) -- 10.5.3 Atomic Force Microscopy (AFM) -- 10.5.4 Infrared and Raman Spectroscopy -- 10.5.5 X-ray Spectroscopy -- 10.5.6 Nuclear Magnetic Resonance (NMR) Spectroscopy -- 10.6 Biofilm-Based Bioremediation -- 10.7 Nitrogen Fixing Microorganisms in Lakes -- 10.8 Conclusion -- 11 Graphene-Based Absorbents for Wastewater Treatment -- 11.1 Introduction -- 11.2 Graphene-Based Materials -- 11.3 Graphene-Polymer Composites -- 11.4 Applications of Graphene as an Adsorbent in Water Remediation -- 11.4.1 Polycyclic Aromatic Hydrocarbons (PAHs) -- 11.4.2 Phenolic Compounds -- 11.4.3 Pharmaceutical Compounds -- 11.4.4 Pesticides -- 11.4.5 Dyes -- 11.5 Future Scope.
12 Sewage Sludge -- 12.1 Introduction -- 12.2 Characteristics of Sewage Sludge -- 12.3 Activation of Sewage Sludge -- 12.4 Disposal of Sludge to Land -- 12.5 The Effect of Sludge Application on Soil Properties -- 12.5.1 Physico-Chemical Properties -- 12.5.2 Microbial Parameters of Soil -- 12.5.3 Concentration of Nutrients and the Heavy Metals in Sewage Sludge and Soil -- 12.6 Outlines of Nutrients and Harmful Metals in Sludge and Soil -- 12.7 The Accumulation of Nutrients by Crops -- 12.8 Future Views -- 13 Microbial Fuel Cells for the Treatment of Wastewater -- 13.1 Introduction -- 13.2 Biochemical Sustenance of Microbes -- 13.3 Functioning of MFCs -- 13.3.1 Uses of MFCs -- 13.3.2 Wastewater Treatment -- 13.3.3 Power Supply to Underwater Monitoring Devices -- 13.3.4 Power Supply to Remote Sensors -- 13.3.5 BOD Sensing -- 13.3.6 Hydrogen Manufacture -- 13.4 Microbial Fuel Cells Treatment of Wastewater -- 13.5 Microbial Fuel Cell Design -- 13.6 Construction of MFCs -- 13.6.1 Two Cell MFCs -- 13.6.2 Single Compartment MFCs -- 13.7 MFCs and Wastewater Remediation -- 13.7.1 Microbial Fuel Cells for Wastewater Treatment and Energy Generation -- 13.7.2 Treatment of Sewage and Electricity Production by Microbial Fuel Cells -- 13.7.3 Advanced MFCs for Wastewater Treatment -- 13.8 Wastewater Treatment by MFCs Coupled with Peroxicoagulation Process -- 13.9 MFCs and Generation of Bioelectricity -- 13.10 Electricigens in the MFCs -- 13.11 Future Prospects -- 13.12 Conclusion -- 14 Water Resources Planning and Management Paradigm Decision-Making -- 14.1 Introduction -- 14.2 Freshwater Stress -- 14.3 Globalization -- 14.4 Disparity in Supply and Demand -- 14.5 Planning and Management Approaches -- 14.5.1 Top-Down Approach -- 14.5.2 Bottom-Up Approach -- 14.6 Integrated Water Resources Management.
14.7 Water Management and Planning: Goals, Strategies, Decisions, and Scenarios.
Record Nr. UNINA-9910830416403321
Bhat Rouf Ahmad <1981->  
Hoboken, New Jersey : , : John Wiley & Sons, Inc., , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Plant and algae biomass : feasible sources for biofuel production. / / Rouf Ahmad Bhat [and three others]
Plant and algae biomass : feasible sources for biofuel production. / / Rouf Ahmad Bhat [and three others]
Autore Bhat Rouf Ahmad <1981->
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (173 pages)
Disciplina 333.9539
Soggetto topico Biomass energy
Plant biotechnology
ISBN 3-030-94074-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910547291503321
Bhat Rouf Ahmad <1981->  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui