top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Microgrids : Dynamic Modeling, Stability and Control
Microgrids : Dynamic Modeling, Stability and Control
Autore Shafiee Qobad
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (446 pages)
Altri autori (Persone) NaderiMobin
BevraniHassan
ISBN 1-119-90623-7
1-119-90621-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Microgrid Concept and Capabilities -- 1.3 Microgrid Structure -- 1.4 Microgrids in the Future Smart Grids -- 1.5 Microgrids‐Integrated Power Grids -- 1.6 Current Trends and Future Directions -- 1.6.1 Dynamic Behavior of MGs and Their Impacts on Power Grids -- 1.6.2 Microgrid‐Based Ancillary Services -- 1.6.3 Dynamic Modeling and Control -- 1.7 The Book Content and Organization -- References -- Part I Individual Microgrids -- Chapter 2 Microgrid Dynamic Modeling: Concepts and Fundamentals -- 2.1 Introduction -- 2.2 Dynamics and Modeling -- 2.3 Fundamental Analysis Tools and Requirements -- 2.3.1 State‐Space (Small‐Signal) Modeling -- 2.3.1.1 Finding Differential Equations -- 2.3.1.2 Park and Clark Transformations -- 2.3.1.3 Linearization -- 2.3.1.4 State‐Space Representation -- 2.3.1.5 Interconnecting Modules -- 2.3.2 Detailed Modeling -- 2.3.3 Simplification Methods -- 2.3.3.1 Truncation (Regular Perturbation) -- 2.3.3.2 Residualization (Singular Perturbation) -- 2.3.3.3 Aggregation -- 2.3.3.4 Sensitivity Analysis -- 2.3.4 Prony Analysis -- 2.3.5 Large‐Signal Modeling -- 2.4 Small‐Signal Modeling of Microgrid Components -- 2.4.1 DC-AC Converter (Inverter) -- 2.4.2 AC-DC Converter (Rectifier) -- 2.4.3 DC-DC Converter (Chopper) -- 2.4.4 LC Filter -- 2.4.5 Power Network -- 2.4.5.1 Virtual Resistor Calculation -- 2.4.6 Loads -- 2.4.6.1 Constant RL Impedance Load -- 2.4.6.2 Constant Power Load (CPL) -- 2.4.6.3 Motor Load -- 2.4.6.4 Active Load -- 2.4.7 Energy Resources and Storages -- 2.4.7.1 Wind Generation Unit -- 2.4.7.2 Photovoltaic Generation Unit -- 2.4.7.3 Battery -- 2.4.7.4 Super‐Capacitor -- 2.5 Small‐Signal Modeling of Microgrid Controllers -- 2.5.1 Primary Control Strategies.
2.5.1.1 Grid‐Forming Strategy -- 2.5.1.2 Grid‐Following Strategy -- 2.5.2 Secondary Control -- 2.5.3 Higher Control Levels -- 2.6 Large‐Signal Modeling: An Example -- 2.6.1 Governing Equations on Synchronverter -- 2.6.2 Nonlinear State‐Space Representation -- 2.7 Summary -- References -- Chapter 3 Microgrid Dynamic Modeling: Overall Modeling and Case Studies -- 3.1 Introduction -- 3.2 Overall Microgrid Dynamic Modeling -- 3.2.1 Common Reference Frame -- 3.2.2 Microgrid General State‐Space Model -- 3.2.3 Grid Model -- 3.3 Small‐Signal Modeling of DC and AC Microgrids -- 3.3.1 A Grid‐Connected PV -- 3.3.2 Grid‐Connected AC Microgrids -- 3.3.3 Islanded AC Microgrids: The Detailed Model -- 3.3.4 Islanded AC Microgrids: A Sensitivity Analysis‐Based Simplified Model -- 3.3.4.1 Removing/Reconfiguration Process of Modules -- 3.3.4.2 DLFMs Comparison of the Detailed and Simplified Models -- 3.3.4.3 The Oscillatory DLFM Comparison -- 3.3.5 Islanded AC Microgrids: Aggregated Single‐Order Model -- 3.3.5.1 General Steps of Modeling -- 3.3.5.2 Virtual Swing Equation‐Based Single‐Order Model -- 3.3.6 Islanded DC Microgrid -- 3.4 Large‐Signal Modeling of Microgrids -- 3.4.1 Model Validation -- 3.4.2 Time‐Domain Simulations -- 3.5 Summary -- References -- Chapter 4 Microgrids Stability -- 4.1 Introduction -- 4.2 Stability Definition and Classification -- 4.3 Basic Requirements -- 4.3.1 Eigenvalue Analysis -- 4.3.2 Participation Matrix -- 4.3.3 Sensitivity Analysis -- 4.4 Small‐Signal Stability Analysis -- 4.4.1 Grid‐Connected PV -- 4.4.1.1 Sensitivity Analysis: LC Filter Parameters -- 4.4.1.2 Sensitivity Analysis: Coupling/Grid Line Length -- 4.4.1.3 Sensitivity Analysis: PLL Gains -- 4.4.1.4 Sensitivity Analysis: Current Control Gains -- 4.4.1.5 Sensitivity Analysis: DC Voltage Control gains -- 4.4.2 Grid‐Connected AC Microgrids.
4.4.2.1 Sensitivity Analysis: Grid Strength Study -- 4.4.2.2 Sensitivity Analysis: Interaction of GFL DERs -- 4.4.3 Islanded AC Microgrids -- 4.4.3.1 Sensitivity Analysis of Droop Gains -- 4.4.3.2 Sensitivity Analysis of Virtual Impedance -- 4.4.3.3 Stability Analysis of Secondary Control -- 4.4.3.4 Sensitivity Analysis of GFL DER Parameters -- 4.4.3.5 Weakness of AC Microgrids -- 4.4.3.6 Relative Stability Improvement Using Grid‐Supporting Control Strategy -- 4.4.4 Islanded DC Microgrids -- 4.5 Transient Stability -- 4.5.1 Power Sharing Stability in AC Microgrids -- 4.5.2 Synchronverter Stabilization -- 4.5.2.1 Adaptive Backstepping Stabilizing Method -- 4.5.2.2 Simulation Results -- 4.6 Summary -- References -- Chapter 5 Microgrid Control: Concepts and Fundamentals -- 5.1 Introduction -- 5.2 Fundamentals and Requirements -- 5.2.1 Introduction to Control Systems -- 5.2.2 Control Objectives and Challenges -- 5.2.3 Control Architectures -- 5.3 Control Strategies for Power Converters -- 5.3.1 Introduction -- 5.3.2 Grid‐Following Power Converters -- 5.3.2.1 Current Control -- 5.3.2.2 Synchronization Algorithm -- 5.3.3 Grid‐Forming Power Converters -- 5.4 Hierarchical Control -- 5.4.1 The Control Hierarchy -- 5.4.2 Control Layers -- 5.5 Primary Control -- 5.5.1 Droop Control -- 5.5.1.1 Droop Control for Inductive Grids -- 5.5.1.2 Droop Control for Resistive Grids -- 5.5.1.3 Droop Control for Resistive-Inductive Grids -- 5.5.1.4 Discussion on the Conventional Droop Control -- 5.5.1.5 Droop Control for DC Grids -- 5.5.2 Virtual Impedance -- 5.5.3 A Simulation Study for Primary Control of AC Microgrids -- 5.5.3.1 Case Study -- 5.5.3.2 Simulation Results -- 5.6 Secondary Control -- 5.6.1 Secondary Control Functions and Strategies -- 5.6.1.1 Secondary Control Functions -- 5.6.1.2 Secondary Control Strategies -- 5.6.2 Centralized Secondary Control.
5.6.3 Distributed Secondary Control -- 5.6.3.1 Communication Network as a Graph -- 5.6.3.2 Average‐Based DISC -- 5.6.3.3 Consensus‐Based DISC -- 5.6.3.4 Event‐Triggered DISC -- 5.6.4 Decentralized Secondary Control -- 5.6.4.1 Washout Filter‐Based DESC -- 5.6.4.2 Local Variable‐Based DESC -- 5.6.4.3 Estimation‐Based DESC -- 5.6.5 A Simulation Study for Secondary Control of AC Microgrids -- 5.6.5.1 Case Study and Controller Implementation -- 5.6.5.2 Simulation Results -- 5.7 Central Control -- 5.8 Global Control -- 5.9 Summary -- References -- Chapter 6 Advances in Microgrid Control -- 6.1 Introduction -- 6.2 Advanced Control Synthesis -- 6.2.1 Advanced Control Techniques -- 6.2.1.1 Optimal Control -- 6.2.1.2 Robust Control -- 6.2.1.3 Nonlinear Control -- 6.2.1.4 Intelligent Control -- 6.2.2 Model Predictive Control -- 6.2.2.1 MPC for Microgrids -- 6.2.2.2 Finite Control Set Model Predictive Control -- 6.2.3 Model Predictive Control of DC Microgrids with Constant Power Loads -- 6.2.3.1 Case Study and Dynamic Modeling -- 6.2.3.2 Design Methodology -- 6.2.3.3 Real‐Time Hardware in the Loop Results -- 6.2.4 Hybrid Fuzzy Predictive Control for Smooth Transition of AC Microgrids -- 6.2.4.1 Case Study and Dynamic Modeling -- 6.2.4.2 Control System Design -- 6.2.4.3 Simulation Results -- 6.3 Virtual Dynamic Control -- 6.3.1 Concept and Structure -- 6.3.2 Virtual Synchronous Generator (VSG) -- 6.3.2.1 VSG Applications -- 6.3.3 Virtual Dynamic Control of DC Microgrids -- 6.3.3.1 Dynamic Improvement of DC Microgrids Using Virtual Inertia Concept -- 6.3.3.2 Case Study and Simulation Results -- 6.4 Resilient and Cybersecure Control -- 6.4.1 Microgrid as a Cyber‐Physical System -- 6.4.2 Communication Requirements -- 6.4.3 Cybersecurity -- 6.4.3.1 Network/Data Cyber Threats on Microgrids -- 6.4.3.2 Distributed Secondary Control Under Network Cyber Attacks.
6.4.3.3 Cyberattack Detection -- 6.4.3.4 Cyberattack Mitigation -- 6.4.4 Event‐Triggered Control -- 6.4.4.1 Event‐Triggered Secondary Control of AC Microgrids -- 6.4.4.2 Physical and Control Layers -- 6.4.4.3 Secondary Control Design -- 6.4.4.4 Case Study and Simulation Results -- 6.5 Summary -- References -- Part II Interconnected Microgrids -- Chapter 7 Interconnected Microgrids: Opportunities and Challenges -- 7.1 Introduction -- 7.2 An Overview -- 7.3 Architectures of Interconnected Microgrids -- 7.4 Benefits, Challenges, and Research Fields -- 7.5 Operation of Interconnected Microgrids -- 7.6 Vacancies for Future Research -- 7.6.1 IMG Dynamic Modeling -- 7.6.2 IMG Stability Analysis -- 7.6.3 IMG Control -- 7.7 Summary -- References -- Chapter 8 Modeling of Interconnected Microgrids -- 8.1 Introduction -- 8.2 Interconnection Method -- 8.3 Module Modeling -- 8.3.1 Microgrid Modeling -- 8.3.1.1 Modeling of Secondary Control for CB‐IMGs -- 8.3.1.2 Other MG Modules -- 8.3.1.3 Overall MG Model -- 8.3.2 Interlinking Line Modeling -- 8.3.3 Back‐to‐Back Converter Modeling -- 8.3.3.1 AC Side of the BTBC -- 8.3.3.2 DC Side of the BTBC -- 8.3.3.3 Dependent Current and Voltage Sources -- 8.3.3.4 BTBC Power Part Interconnection -- 8.3.3.5 Power Controller -- 8.3.3.6 DC Voltage Controller -- 8.3.3.7 Synchronizing PLLs -- 8.3.3.8 Complete Interconnection of BTBC Modules -- 8.3.4 Circuit Breaker Modeling -- 8.4 Overall IMG Modeling -- 8.4.1 Comprehensive Modeling of CB‐IMGs -- 8.4.2 Comprehensive Modeling of BTBC‐IMGs -- 8.5 Model Validation -- 8.5.1 Model Validation Procedure -- 8.5.2 Real‐Time Simulator -- 8.5.3 Validation of CB‐IMG Modeling -- 8.5.3.1 Case Study Information -- 8.5.3.2 Prony Analysis Results -- 8.5.3.3 Comparison Results -- 8.5.4 Validation of BTBC‐IMG Modeling -- 8.6 Reduced‐Order Models.
8.6.1 Simplified Model Application in CB‐IMG Frequency Control.
Record Nr. UNINA-9910830771803321
Shafiee Qobad  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Microgrids : Dynamic Modeling, Stability and Control
Microgrids : Dynamic Modeling, Stability and Control
Autore Shafiee Qobad
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (446 pages)
Altri autori (Persone) NaderiMobin
BevraniHassan
ISBN 1-119-90623-7
1-119-90621-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- About the Authors -- Preface -- Acknowledgments -- Acronyms -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 Microgrid Concept and Capabilities -- 1.3 Microgrid Structure -- 1.4 Microgrids in the Future Smart Grids -- 1.5 Microgrids‐Integrated Power Grids -- 1.6 Current Trends and Future Directions -- 1.6.1 Dynamic Behavior of MGs and Their Impacts on Power Grids -- 1.6.2 Microgrid‐Based Ancillary Services -- 1.6.3 Dynamic Modeling and Control -- 1.7 The Book Content and Organization -- References -- Part I Individual Microgrids -- Chapter 2 Microgrid Dynamic Modeling: Concepts and Fundamentals -- 2.1 Introduction -- 2.2 Dynamics and Modeling -- 2.3 Fundamental Analysis Tools and Requirements -- 2.3.1 State‐Space (Small‐Signal) Modeling -- 2.3.1.1 Finding Differential Equations -- 2.3.1.2 Park and Clark Transformations -- 2.3.1.3 Linearization -- 2.3.1.4 State‐Space Representation -- 2.3.1.5 Interconnecting Modules -- 2.3.2 Detailed Modeling -- 2.3.3 Simplification Methods -- 2.3.3.1 Truncation (Regular Perturbation) -- 2.3.3.2 Residualization (Singular Perturbation) -- 2.3.3.3 Aggregation -- 2.3.3.4 Sensitivity Analysis -- 2.3.4 Prony Analysis -- 2.3.5 Large‐Signal Modeling -- 2.4 Small‐Signal Modeling of Microgrid Components -- 2.4.1 DC-AC Converter (Inverter) -- 2.4.2 AC-DC Converter (Rectifier) -- 2.4.3 DC-DC Converter (Chopper) -- 2.4.4 LC Filter -- 2.4.5 Power Network -- 2.4.5.1 Virtual Resistor Calculation -- 2.4.6 Loads -- 2.4.6.1 Constant RL Impedance Load -- 2.4.6.2 Constant Power Load (CPL) -- 2.4.6.3 Motor Load -- 2.4.6.4 Active Load -- 2.4.7 Energy Resources and Storages -- 2.4.7.1 Wind Generation Unit -- 2.4.7.2 Photovoltaic Generation Unit -- 2.4.7.3 Battery -- 2.4.7.4 Super‐Capacitor -- 2.5 Small‐Signal Modeling of Microgrid Controllers -- 2.5.1 Primary Control Strategies.
2.5.1.1 Grid‐Forming Strategy -- 2.5.1.2 Grid‐Following Strategy -- 2.5.2 Secondary Control -- 2.5.3 Higher Control Levels -- 2.6 Large‐Signal Modeling: An Example -- 2.6.1 Governing Equations on Synchronverter -- 2.6.2 Nonlinear State‐Space Representation -- 2.7 Summary -- References -- Chapter 3 Microgrid Dynamic Modeling: Overall Modeling and Case Studies -- 3.1 Introduction -- 3.2 Overall Microgrid Dynamic Modeling -- 3.2.1 Common Reference Frame -- 3.2.2 Microgrid General State‐Space Model -- 3.2.3 Grid Model -- 3.3 Small‐Signal Modeling of DC and AC Microgrids -- 3.3.1 A Grid‐Connected PV -- 3.3.2 Grid‐Connected AC Microgrids -- 3.3.3 Islanded AC Microgrids: The Detailed Model -- 3.3.4 Islanded AC Microgrids: A Sensitivity Analysis‐Based Simplified Model -- 3.3.4.1 Removing/Reconfiguration Process of Modules -- 3.3.4.2 DLFMs Comparison of the Detailed and Simplified Models -- 3.3.4.3 The Oscillatory DLFM Comparison -- 3.3.5 Islanded AC Microgrids: Aggregated Single‐Order Model -- 3.3.5.1 General Steps of Modeling -- 3.3.5.2 Virtual Swing Equation‐Based Single‐Order Model -- 3.3.6 Islanded DC Microgrid -- 3.4 Large‐Signal Modeling of Microgrids -- 3.4.1 Model Validation -- 3.4.2 Time‐Domain Simulations -- 3.5 Summary -- References -- Chapter 4 Microgrids Stability -- 4.1 Introduction -- 4.2 Stability Definition and Classification -- 4.3 Basic Requirements -- 4.3.1 Eigenvalue Analysis -- 4.3.2 Participation Matrix -- 4.3.3 Sensitivity Analysis -- 4.4 Small‐Signal Stability Analysis -- 4.4.1 Grid‐Connected PV -- 4.4.1.1 Sensitivity Analysis: LC Filter Parameters -- 4.4.1.2 Sensitivity Analysis: Coupling/Grid Line Length -- 4.4.1.3 Sensitivity Analysis: PLL Gains -- 4.4.1.4 Sensitivity Analysis: Current Control Gains -- 4.4.1.5 Sensitivity Analysis: DC Voltage Control gains -- 4.4.2 Grid‐Connected AC Microgrids.
4.4.2.1 Sensitivity Analysis: Grid Strength Study -- 4.4.2.2 Sensitivity Analysis: Interaction of GFL DERs -- 4.4.3 Islanded AC Microgrids -- 4.4.3.1 Sensitivity Analysis of Droop Gains -- 4.4.3.2 Sensitivity Analysis of Virtual Impedance -- 4.4.3.3 Stability Analysis of Secondary Control -- 4.4.3.4 Sensitivity Analysis of GFL DER Parameters -- 4.4.3.5 Weakness of AC Microgrids -- 4.4.3.6 Relative Stability Improvement Using Grid‐Supporting Control Strategy -- 4.4.4 Islanded DC Microgrids -- 4.5 Transient Stability -- 4.5.1 Power Sharing Stability in AC Microgrids -- 4.5.2 Synchronverter Stabilization -- 4.5.2.1 Adaptive Backstepping Stabilizing Method -- 4.5.2.2 Simulation Results -- 4.6 Summary -- References -- Chapter 5 Microgrid Control: Concepts and Fundamentals -- 5.1 Introduction -- 5.2 Fundamentals and Requirements -- 5.2.1 Introduction to Control Systems -- 5.2.2 Control Objectives and Challenges -- 5.2.3 Control Architectures -- 5.3 Control Strategies for Power Converters -- 5.3.1 Introduction -- 5.3.2 Grid‐Following Power Converters -- 5.3.2.1 Current Control -- 5.3.2.2 Synchronization Algorithm -- 5.3.3 Grid‐Forming Power Converters -- 5.4 Hierarchical Control -- 5.4.1 The Control Hierarchy -- 5.4.2 Control Layers -- 5.5 Primary Control -- 5.5.1 Droop Control -- 5.5.1.1 Droop Control for Inductive Grids -- 5.5.1.2 Droop Control for Resistive Grids -- 5.5.1.3 Droop Control for Resistive-Inductive Grids -- 5.5.1.4 Discussion on the Conventional Droop Control -- 5.5.1.5 Droop Control for DC Grids -- 5.5.2 Virtual Impedance -- 5.5.3 A Simulation Study for Primary Control of AC Microgrids -- 5.5.3.1 Case Study -- 5.5.3.2 Simulation Results -- 5.6 Secondary Control -- 5.6.1 Secondary Control Functions and Strategies -- 5.6.1.1 Secondary Control Functions -- 5.6.1.2 Secondary Control Strategies -- 5.6.2 Centralized Secondary Control.
5.6.3 Distributed Secondary Control -- 5.6.3.1 Communication Network as a Graph -- 5.6.3.2 Average‐Based DISC -- 5.6.3.3 Consensus‐Based DISC -- 5.6.3.4 Event‐Triggered DISC -- 5.6.4 Decentralized Secondary Control -- 5.6.4.1 Washout Filter‐Based DESC -- 5.6.4.2 Local Variable‐Based DESC -- 5.6.4.3 Estimation‐Based DESC -- 5.6.5 A Simulation Study for Secondary Control of AC Microgrids -- 5.6.5.1 Case Study and Controller Implementation -- 5.6.5.2 Simulation Results -- 5.7 Central Control -- 5.8 Global Control -- 5.9 Summary -- References -- Chapter 6 Advances in Microgrid Control -- 6.1 Introduction -- 6.2 Advanced Control Synthesis -- 6.2.1 Advanced Control Techniques -- 6.2.1.1 Optimal Control -- 6.2.1.2 Robust Control -- 6.2.1.3 Nonlinear Control -- 6.2.1.4 Intelligent Control -- 6.2.2 Model Predictive Control -- 6.2.2.1 MPC for Microgrids -- 6.2.2.2 Finite Control Set Model Predictive Control -- 6.2.3 Model Predictive Control of DC Microgrids with Constant Power Loads -- 6.2.3.1 Case Study and Dynamic Modeling -- 6.2.3.2 Design Methodology -- 6.2.3.3 Real‐Time Hardware in the Loop Results -- 6.2.4 Hybrid Fuzzy Predictive Control for Smooth Transition of AC Microgrids -- 6.2.4.1 Case Study and Dynamic Modeling -- 6.2.4.2 Control System Design -- 6.2.4.3 Simulation Results -- 6.3 Virtual Dynamic Control -- 6.3.1 Concept and Structure -- 6.3.2 Virtual Synchronous Generator (VSG) -- 6.3.2.1 VSG Applications -- 6.3.3 Virtual Dynamic Control of DC Microgrids -- 6.3.3.1 Dynamic Improvement of DC Microgrids Using Virtual Inertia Concept -- 6.3.3.2 Case Study and Simulation Results -- 6.4 Resilient and Cybersecure Control -- 6.4.1 Microgrid as a Cyber‐Physical System -- 6.4.2 Communication Requirements -- 6.4.3 Cybersecurity -- 6.4.3.1 Network/Data Cyber Threats on Microgrids -- 6.4.3.2 Distributed Secondary Control Under Network Cyber Attacks.
6.4.3.3 Cyberattack Detection -- 6.4.3.4 Cyberattack Mitigation -- 6.4.4 Event‐Triggered Control -- 6.4.4.1 Event‐Triggered Secondary Control of AC Microgrids -- 6.4.4.2 Physical and Control Layers -- 6.4.4.3 Secondary Control Design -- 6.4.4.4 Case Study and Simulation Results -- 6.5 Summary -- References -- Part II Interconnected Microgrids -- Chapter 7 Interconnected Microgrids: Opportunities and Challenges -- 7.1 Introduction -- 7.2 An Overview -- 7.3 Architectures of Interconnected Microgrids -- 7.4 Benefits, Challenges, and Research Fields -- 7.5 Operation of Interconnected Microgrids -- 7.6 Vacancies for Future Research -- 7.6.1 IMG Dynamic Modeling -- 7.6.2 IMG Stability Analysis -- 7.6.3 IMG Control -- 7.7 Summary -- References -- Chapter 8 Modeling of Interconnected Microgrids -- 8.1 Introduction -- 8.2 Interconnection Method -- 8.3 Module Modeling -- 8.3.1 Microgrid Modeling -- 8.3.1.1 Modeling of Secondary Control for CB‐IMGs -- 8.3.1.2 Other MG Modules -- 8.3.1.3 Overall MG Model -- 8.3.2 Interlinking Line Modeling -- 8.3.3 Back‐to‐Back Converter Modeling -- 8.3.3.1 AC Side of the BTBC -- 8.3.3.2 DC Side of the BTBC -- 8.3.3.3 Dependent Current and Voltage Sources -- 8.3.3.4 BTBC Power Part Interconnection -- 8.3.3.5 Power Controller -- 8.3.3.6 DC Voltage Controller -- 8.3.3.7 Synchronizing PLLs -- 8.3.3.8 Complete Interconnection of BTBC Modules -- 8.3.4 Circuit Breaker Modeling -- 8.4 Overall IMG Modeling -- 8.4.1 Comprehensive Modeling of CB‐IMGs -- 8.4.2 Comprehensive Modeling of BTBC‐IMGs -- 8.5 Model Validation -- 8.5.1 Model Validation Procedure -- 8.5.2 Real‐Time Simulator -- 8.5.3 Validation of CB‐IMG Modeling -- 8.5.3.1 Case Study Information -- 8.5.3.2 Prony Analysis Results -- 8.5.3.3 Comparison Results -- 8.5.4 Validation of BTBC‐IMG Modeling -- 8.6 Reduced‐Order Models.
8.6.1 Simplified Model Application in CB‐IMG Frequency Control.
Record Nr. UNINA-9910841181903321
Shafiee Qobad  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Optimization in Electrical Engineering / / by Mohammad Fathi, Hassan Bevrani
Optimization in Electrical Engineering / / by Mohammad Fathi, Hassan Bevrani
Autore Fathi Mohammad
Edizione [1st ed. 2019.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Descrizione fisica 1 online resource (IX, 174 p. 60 illus., 43 illus. in color.)
Disciplina 519.3
519.6
Soggetto topico Power electronics
Mathematical optimization
Energy systems
Power Electronics, Electrical Machines and Networks
Optimization
Energy Systems
ISBN 3-030-05309-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Linear Algebra Review -- Set constrained Optimization -- Convex Programming -- Duality -- LMI-based Optimization -- Artificial intelligence and evolutionary algorithms based optimization.
Record Nr. UNINA-9910337641603321
Fathi Mohammad  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Renewable integrated power system stability and control / / Hêmin Golpîra, Arturo R. Messina, Hassan Bevrani
Renewable integrated power system stability and control / / Hêmin Golpîra, Arturo R. Messina, Hassan Bevrani
Autore Golpîra Hêmin
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Descrizione fisica 1 online resource (353 pages)
Disciplina 621.31
Collana Wiley - IEEE Ser.
Soggetto topico Electric power systems
ISBN 1-119-68977-5
1-119-68983-X
1-119-68982-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Power System Stability and Control -- 1.2 Current State of Power System Stability and Control -- 1.2.1 Frequency Control -- 1.2.2 Voltage Control -- 1.2.3 Oscillation Damping -- 1.3 Data-Driven Wide-Area Power System Monitoring and Control -- 1.4 Dynamics Modeling and Parameters Estimation -- 1.4.1 Modeling of Frequency, Voltage, and Angle Controls -- 1.4.2 Parameters Estimation -- 1.5 Summary -- References -- Chapter 2 MG Penetrated Power Grid Modeling -- 2.1 Introduction -- 2.2 Basic Concepts -- 2.2.1 Dynamic Equivalencing -- 2.2.2 Background on Study Zone and External System -- 2.3 Power Grid Modeling -- 2.3.1 The Notion of Center-of Gravity (COG) -- 2.3.1.1 Key Concept -- 2.3.1.2 Basic Assumptions -- 2.3.1.3 Modeling Formulation -- 2.3.1.4 Local Frequency Estimation -- 2.3.1.5 Simulation Results -- 2.3.2 An Enhanced COG-Based Model -- 2.3.2.1 Key Concept -- 2.3.2.2 Simulation Results -- 2.3.3 Generalized Equivalent Model -- 2.3.3.1 Basic Logic -- 2.3.3.2 Simulation and Results -- 2.4 MG Equivalent Model -- 2.4.1 Islanded Mode -- 2.4.1.1 Synchronous-Based DG -- 2.4.1.2 Genset Model Validation -- 2.4.1.3 Inverter-Based DG -- 2.4.1.4 Inverter-Based DG Model Validation -- 2.4.2 Grid-Connected Mode -- 2.4.2.1 Basic Logic -- 2.4.2.2 Model Validation -- 2.5 Summary -- References -- Chapter 3 Stability Assessment of Power Grids with High Microgrid Penetration -- 3.1 Introduction -- 3.1.1 Motivation -- 3.1.2 Relations with Previous Literature -- 3.2 Frequency Stability Assessment -- 3.2.1 Background on Frequency Indices -- 3.2.1.1 Rate of Change of Frequency -- 3.2.1.2 Frequency Nadir -- 3.2.1.3 Delta Frequency Detection -- 3.2.2 Frequency Stability Assessment Under High MG Penetration Levels -- 3.2.3 Sensitivity Factors.
3.2.3.1 Frequency Response -- 3.2.3.2 Delta Frequency Detection -- 3.2.4 Simulation and Results -- 3.3 Maximum Penetration Level: Frequency Stability -- 3.3.1 Basic Principle -- 3.3.2 Background on MG Modeling -- 3.3.3 Minimum Inertia Related to Frequency Nadir -- 3.3.4 Minimum Inertia Related to Delta Frequency Detection -- 3.3.5 Minimum Inertia Related to RoCoF -- 3.3.6 Maximum Penetration Level -- 3.3.7 Simulation and Results -- 3.3.7.1 Analysis Tools -- 3.3.7.2 Dynamical Simulation Results -- 3.4 Small-Signal Stability Assessment -- 3.4.1 Basic Definition -- 3.4.2 Key Concept -- 3.4.3 Simulation and Results -- 3.5 Maximum Penetration Level: Small-Signal Stability -- 3.5.1 Basic Idea -- 3.5.2 Simulation and Results -- 3.6 Voltage-Based Realization of the MG-Integrated Power Grid -- 3.6.1 Key Concepts -- 3.6.2 Jacobian Sensitivities -- 3.6.2.1 V-P Sensitivity -- 3.6.2.2 V-Q Sensitivity -- 3.6.3 Simulation and Results -- 3.7 Summary -- References -- Chapter 4 Advanced Virtual Inertia Control and Optimal Placement -- 4.1 Introduction -- 4.2 Virtual Synchronous Generator -- 4.2.1 Concept and Structure -- 4.2.2 Basic Control Scheme and Applications -- 4.2.3 Application in Power System Dynamic Enhancement -- 4.2.3.1 Scenario 1: 10-MW Load Increase at Bus 9 -- 4.2.3.2 Scenario 2: 20-MW Power Command Decrease of G3 -- 4.2.4 Application to Power Grids with HVDC Systems -- 4.3 Dispatchable Inertia Placement -- 4.3.1 Frequency Dynamics Enhancement -- 4.3.1.1 Background: Literature Review -- 4.3.1.2 Virtual Inertia Modeling -- Main Idea -- MUSIC Analysis: Methodology and Application -- 4.3.1.3 Experimental Verification -- 4.3.1.4 Economic Modeling -- 4.3.1.5 Simulation and Results -- 4.3.1.6 Sensitivity Analysis -- 4.3.2 Small-Signal Stability -- 4.3.2.1 Objective Function -- 4.3.2.2 Simulation Results -- 4.4 Summary -- References.
Chapter 5 Wide-Area Voltage Monitoring in High-Renewable Integrated Power Systems -- 5.1 Introduction -- 5.2 Voltage Control Areas: A Background -- 5.2.1 Voltage Sensitivities -- 5.2.2 Electrical Distances -- 5.2.3 Reactive Control Zones and Pilot Nodes -- 5.2.3.1 Selection of Optimal Pilot Buses -- 5.2.3.2 Selection of Control Plants -- 5.2.4 Other Approaches -- 5.3 Data-driven Approaches -- 5.3.1 Wide-Area Voltage and Reactive Power Regulation -- 5.3.2 PMU-Based Voltage Monitoring -- 5.4 Theoretical Framework -- 5.4.1 Dynamic Trajectories -- 5.4.2 Spectral Graph Theory -- 5.4.3 Kernel Methods -- 5.4.3.1 Markov Matrices -- 5.4.3.2 The Markov Clustering Algorithm -- 5.4.4 Spatiotemporal Clustering -- 5.5 Case Study -- 5.5.1 Sensitivity Studies -- 5.5.2 Data-Driven Analysis -- 5.5.3 Measurement-Based Reactive Control Areas -- 5.5.3.1 Diffusion Maps -- 5.5.4 Direct Clustering -- 5.5.5 Correlation Analysis -- 5.5.5.1 Direct Analysis of Concatenated Data -- 5.5.5.2 Two-Way Correlation Analysis -- 5.5.5.3 Partial Least Squares Correlation -- 5.6 Summary -- References -- Chapter 6 Advanced Control Synthesis -- 6.1 Introduction -- 6.2 Frequency Dynamics Enhancement -- 6.2.1 Background: The Concept of Flexible Inertia -- 6.2.2 Frequency Dynamics Propagation -- 6.2.3 Inertia-Based Control Scheme -- 6.2.4 Flexible Inertia: Practical Considerations -- 6.2.5 Results and Discussions -- 6.3 Small Signal Stability Enhancement -- 6.3.1 Key Concept -- 6.3.2 Control Scheme Design -- 6.3.3 Simulation and Results -- 6.4 Summary -- References -- Chapter 7 Small-Signal and Transient Stability Assessment Using Data-Driven Approaches -- 7.1 Background and Motivation -- 7.2 Modal Characterization Using Data-Driven Approaches -- 7.2.1 Modal Decomposition -- 7.2.2 Multisignal Prony Analysis -- 7.2.2.1 Standard Prony Analysis -- 7.2.2.2 Modified Least-Squares Algorithm.
7.2.2.3 Multichannel Prony Analysis -- 7.2.2.4 Hankel-SVD Methods -- 7.2.3 Koopman and Dynamic Mode Decomposition Representations -- 7.2.3.1 The Koopman Operator -- 7.2.4 Dynamic Mode Decomposition -- 7.2.4.1 SVD-Based Methods -- 7.2.4.2 The Companion Matrix Approach -- 7.2.4.3 Energy Criteria -- 7.3 Studies of a Small-Scale Power System Model -- 7.3.1 System Data and Operating Scenarios -- 7.3.2 Exploratory Small-Signal Analysis -- 7.3.3 Large System Performance -- 7.3.3.1 Cases B-C -- 7.3.3.2 Case D -- 7.3.4 Mode Shape Identification -- 7.3.5 Temporal Clustering -- 7.4 Large-Scale System Study -- 7.4.1 Case Study Description -- 7.4.2 Renewable Generator Modeling -- 7.4.3 Effect of Inverter-Based DGs on Oscillatory Stability -- 7.4.4 Large System Performance -- 7.4.5 Model Validation -- 7.4.5.1 Reconstructed Flow Fields -- 7.4.6 Identification of Mode Shapes Using DMD -- 7.5 Analysis Results and Discussion -- References -- Chapter 8 Solar and Wind Integration Case Studies -- 8.1 General Context and Motivation -- 8.2 Study System -- 8.3 Wind Power Integration in the South Systems -- 8.3.1 Study Region -- 8.3.2 Existing System Limitations -- 8.4 Impact of Increased Wind Penetration on the System Performance -- 8.4.1 Study Considerations and Scenario Development -- 8.4.2 Base Case Assessment -- 8.4.2.1 System Oscillatory Response -- 8.4.3 High Wind Penetration Case -- 8.5 Frequency Response -- 8.5.1 Frequency Variations -- 8.5.2 Wind and Hydropower Coordination -- 8.5.3 Response to Loss-of-Generation Events -- 8.6 Effect of Voltage Control on System Dynamic Performance -- 8.6.1 Voltage Support and Reactive Power Dispatch -- 8.6.2 Effect of Voltage Control Characteristics -- 8.7 Summary -- References -- Index.
Record Nr. UNINA-9910554822303321
Golpîra Hêmin  
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Renewable integrated power system stability and control / / Hêmin Golpîra, Arturo R. Messina, Hassan Bevrani
Renewable integrated power system stability and control / / Hêmin Golpîra, Arturo R. Messina, Hassan Bevrani
Autore Golpîra Hêmin
Pubbl/distr/stampa Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Descrizione fisica 1 online resource (353 pages)
Disciplina 621.31
Collana Wiley - IEEE
Soggetto topico Electric power systems
ISBN 1-119-68977-5
1-119-68983-X
1-119-68982-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgments -- Chapter 1 Introduction -- 1.1 Power System Stability and Control -- 1.2 Current State of Power System Stability and Control -- 1.2.1 Frequency Control -- 1.2.2 Voltage Control -- 1.2.3 Oscillation Damping -- 1.3 Data-Driven Wide-Area Power System Monitoring and Control -- 1.4 Dynamics Modeling and Parameters Estimation -- 1.4.1 Modeling of Frequency, Voltage, and Angle Controls -- 1.4.2 Parameters Estimation -- 1.5 Summary -- References -- Chapter 2 MG Penetrated Power Grid Modeling -- 2.1 Introduction -- 2.2 Basic Concepts -- 2.2.1 Dynamic Equivalencing -- 2.2.2 Background on Study Zone and External System -- 2.3 Power Grid Modeling -- 2.3.1 The Notion of Center-of Gravity (COG) -- 2.3.1.1 Key Concept -- 2.3.1.2 Basic Assumptions -- 2.3.1.3 Modeling Formulation -- 2.3.1.4 Local Frequency Estimation -- 2.3.1.5 Simulation Results -- 2.3.2 An Enhanced COG-Based Model -- 2.3.2.1 Key Concept -- 2.3.2.2 Simulation Results -- 2.3.3 Generalized Equivalent Model -- 2.3.3.1 Basic Logic -- 2.3.3.2 Simulation and Results -- 2.4 MG Equivalent Model -- 2.4.1 Islanded Mode -- 2.4.1.1 Synchronous-Based DG -- 2.4.1.2 Genset Model Validation -- 2.4.1.3 Inverter-Based DG -- 2.4.1.4 Inverter-Based DG Model Validation -- 2.4.2 Grid-Connected Mode -- 2.4.2.1 Basic Logic -- 2.4.2.2 Model Validation -- 2.5 Summary -- References -- Chapter 3 Stability Assessment of Power Grids with High Microgrid Penetration -- 3.1 Introduction -- 3.1.1 Motivation -- 3.1.2 Relations with Previous Literature -- 3.2 Frequency Stability Assessment -- 3.2.1 Background on Frequency Indices -- 3.2.1.1 Rate of Change of Frequency -- 3.2.1.2 Frequency Nadir -- 3.2.1.3 Delta Frequency Detection -- 3.2.2 Frequency Stability Assessment Under High MG Penetration Levels -- 3.2.3 Sensitivity Factors.
3.2.3.1 Frequency Response -- 3.2.3.2 Delta Frequency Detection -- 3.2.4 Simulation and Results -- 3.3 Maximum Penetration Level: Frequency Stability -- 3.3.1 Basic Principle -- 3.3.2 Background on MG Modeling -- 3.3.3 Minimum Inertia Related to Frequency Nadir -- 3.3.4 Minimum Inertia Related to Delta Frequency Detection -- 3.3.5 Minimum Inertia Related to RoCoF -- 3.3.6 Maximum Penetration Level -- 3.3.7 Simulation and Results -- 3.3.7.1 Analysis Tools -- 3.3.7.2 Dynamical Simulation Results -- 3.4 Small-Signal Stability Assessment -- 3.4.1 Basic Definition -- 3.4.2 Key Concept -- 3.4.3 Simulation and Results -- 3.5 Maximum Penetration Level: Small-Signal Stability -- 3.5.1 Basic Idea -- 3.5.2 Simulation and Results -- 3.6 Voltage-Based Realization of the MG-Integrated Power Grid -- 3.6.1 Key Concepts -- 3.6.2 Jacobian Sensitivities -- 3.6.2.1 V-P Sensitivity -- 3.6.2.2 V-Q Sensitivity -- 3.6.3 Simulation and Results -- 3.7 Summary -- References -- Chapter 4 Advanced Virtual Inertia Control and Optimal Placement -- 4.1 Introduction -- 4.2 Virtual Synchronous Generator -- 4.2.1 Concept and Structure -- 4.2.2 Basic Control Scheme and Applications -- 4.2.3 Application in Power System Dynamic Enhancement -- 4.2.3.1 Scenario 1: 10-MW Load Increase at Bus 9 -- 4.2.3.2 Scenario 2: 20-MW Power Command Decrease of G3 -- 4.2.4 Application to Power Grids with HVDC Systems -- 4.3 Dispatchable Inertia Placement -- 4.3.1 Frequency Dynamics Enhancement -- 4.3.1.1 Background: Literature Review -- 4.3.1.2 Virtual Inertia Modeling -- Main Idea -- MUSIC Analysis: Methodology and Application -- 4.3.1.3 Experimental Verification -- 4.3.1.4 Economic Modeling -- 4.3.1.5 Simulation and Results -- 4.3.1.6 Sensitivity Analysis -- 4.3.2 Small-Signal Stability -- 4.3.2.1 Objective Function -- 4.3.2.2 Simulation Results -- 4.4 Summary -- References.
Chapter 5 Wide-Area Voltage Monitoring in High-Renewable Integrated Power Systems -- 5.1 Introduction -- 5.2 Voltage Control Areas: A Background -- 5.2.1 Voltage Sensitivities -- 5.2.2 Electrical Distances -- 5.2.3 Reactive Control Zones and Pilot Nodes -- 5.2.3.1 Selection of Optimal Pilot Buses -- 5.2.3.2 Selection of Control Plants -- 5.2.4 Other Approaches -- 5.3 Data-driven Approaches -- 5.3.1 Wide-Area Voltage and Reactive Power Regulation -- 5.3.2 PMU-Based Voltage Monitoring -- 5.4 Theoretical Framework -- 5.4.1 Dynamic Trajectories -- 5.4.2 Spectral Graph Theory -- 5.4.3 Kernel Methods -- 5.4.3.1 Markov Matrices -- 5.4.3.2 The Markov Clustering Algorithm -- 5.4.4 Spatiotemporal Clustering -- 5.5 Case Study -- 5.5.1 Sensitivity Studies -- 5.5.2 Data-Driven Analysis -- 5.5.3 Measurement-Based Reactive Control Areas -- 5.5.3.1 Diffusion Maps -- 5.5.4 Direct Clustering -- 5.5.5 Correlation Analysis -- 5.5.5.1 Direct Analysis of Concatenated Data -- 5.5.5.2 Two-Way Correlation Analysis -- 5.5.5.3 Partial Least Squares Correlation -- 5.6 Summary -- References -- Chapter 6 Advanced Control Synthesis -- 6.1 Introduction -- 6.2 Frequency Dynamics Enhancement -- 6.2.1 Background: The Concept of Flexible Inertia -- 6.2.2 Frequency Dynamics Propagation -- 6.2.3 Inertia-Based Control Scheme -- 6.2.4 Flexible Inertia: Practical Considerations -- 6.2.5 Results and Discussions -- 6.3 Small Signal Stability Enhancement -- 6.3.1 Key Concept -- 6.3.2 Control Scheme Design -- 6.3.3 Simulation and Results -- 6.4 Summary -- References -- Chapter 7 Small-Signal and Transient Stability Assessment Using Data-Driven Approaches -- 7.1 Background and Motivation -- 7.2 Modal Characterization Using Data-Driven Approaches -- 7.2.1 Modal Decomposition -- 7.2.2 Multisignal Prony Analysis -- 7.2.2.1 Standard Prony Analysis -- 7.2.2.2 Modified Least-Squares Algorithm.
7.2.2.3 Multichannel Prony Analysis -- 7.2.2.4 Hankel-SVD Methods -- 7.2.3 Koopman and Dynamic Mode Decomposition Representations -- 7.2.3.1 The Koopman Operator -- 7.2.4 Dynamic Mode Decomposition -- 7.2.4.1 SVD-Based Methods -- 7.2.4.2 The Companion Matrix Approach -- 7.2.4.3 Energy Criteria -- 7.3 Studies of a Small-Scale Power System Model -- 7.3.1 System Data and Operating Scenarios -- 7.3.2 Exploratory Small-Signal Analysis -- 7.3.3 Large System Performance -- 7.3.3.1 Cases B-C -- 7.3.3.2 Case D -- 7.3.4 Mode Shape Identification -- 7.3.5 Temporal Clustering -- 7.4 Large-Scale System Study -- 7.4.1 Case Study Description -- 7.4.2 Renewable Generator Modeling -- 7.4.3 Effect of Inverter-Based DGs on Oscillatory Stability -- 7.4.4 Large System Performance -- 7.4.5 Model Validation -- 7.4.5.1 Reconstructed Flow Fields -- 7.4.6 Identification of Mode Shapes Using DMD -- 7.5 Analysis Results and Discussion -- References -- Chapter 8 Solar and Wind Integration Case Studies -- 8.1 General Context and Motivation -- 8.2 Study System -- 8.3 Wind Power Integration in the South Systems -- 8.3.1 Study Region -- 8.3.2 Existing System Limitations -- 8.4 Impact of Increased Wind Penetration on the System Performance -- 8.4.1 Study Considerations and Scenario Development -- 8.4.2 Base Case Assessment -- 8.4.2.1 System Oscillatory Response -- 8.4.3 High Wind Penetration Case -- 8.5 Frequency Response -- 8.5.1 Frequency Variations -- 8.5.2 Wind and Hydropower Coordination -- 8.5.3 Response to Loss-of-Generation Events -- 8.6 Effect of Voltage Control on System Dynamic Performance -- 8.6.1 Voltage Support and Reactive Power Dispatch -- 8.6.2 Effect of Voltage Control Characteristics -- 8.7 Summary -- References -- Index.
Record Nr. UNINA-9910830586803321
Golpîra Hêmin  
Hoboken, New Jersey : , : Wiley-IEEE Press, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui