top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Characterizing k-dimensional universal Menger compacta / / Mladen Bestvina
Characterizing k-dimensional universal Menger compacta / / Mladen Bestvina
Autore Bestvina Mladen <1959->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1988
Descrizione fisica 1 online resource (121 p.)
Disciplina 514/.3
Collana Memoirs of the American Mathematical Society
Soggetto topico Metric spaces
Manifolds (Mathematics)
Soggetto genere / forma Electronic books.
ISBN 1-4704-0800-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TABLE OF CONTENTS""; ""INTRODUCTION""; ""DEFINITIONS AND NOTATION""; ""1. PARTITIONS""; ""1.1. Partitions on Compact PL-Manifolds (With Boundary)""; ""1.2. The Standard Construction of the Universal k-Dimensional Menger Space Î?[sup(k)] and Î?[sup(k)]-Manifolds""; ""1.3. A Combinatorial Characterization of Î?[sup(k)]""; ""2. BASIC MOVES""; ""2.1. On LC[sup(k-1)]-Spaces and UV[sup(k-1)]-Maps""; ""2.2. The Isotopy Move and Verification of Axiom 1""; ""2.3. Absorbing Maps and Basic Properties of Î?[sup(k)]-Manifolds""; ""2.4. Building Partitions and Associated Maps""
""2.5. Connecting Intersections""""2.6. Correct Ordering""; ""2.7. Increasing the Connectivity of Partition Elements""; ""2.8 Some Easy Consequences""; ""3. THE Z-SET UNKNOTTING THEOREM""; ""3.1. The Z-set Unknotting Theorem""; ""3.2. Homogeneity of Î?[sup(k)]""; ""4. THE DECOMPOSITION THEORY OF MENGER MANIFOLDS""; ""4.1. The Z-set Shrinking Theorem""; ""4.2. The Ï?-Z-set Shrinking Theorem""; ""4.3. The Main Shrinking Theorem""; ""5. THE CHARACTERIZATION THEOREM""; ""5.1. The Resolution Theorem""; ""5.2. The Characterization Theorem""; ""6. NONCOMPACT MENGER MANIFOLDS""; ""APPENDIX""
""LIST OF REFERENCES""
Record Nr. UNINA-9910480676103321
Bestvina Mladen <1959->  
Providence, Rhode Island : , : American Mathematical Society, , 1988
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Characterizing k-dimensional universal Menger compacta / / Mladen Bestvina
Characterizing k-dimensional universal Menger compacta / / Mladen Bestvina
Autore Bestvina Mladen <1959->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1988
Descrizione fisica 1 online resource (121 p.)
Disciplina 514/.3
Collana Memoirs of the American Mathematical Society
Soggetto topico Metric spaces
Manifolds (Mathematics)
ISBN 1-4704-0800-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TABLE OF CONTENTS""; ""INTRODUCTION""; ""DEFINITIONS AND NOTATION""; ""1. PARTITIONS""; ""1.1. Partitions on Compact PL-Manifolds (With Boundary)""; ""1.2. The Standard Construction of the Universal k-Dimensional Menger Space Î?[sup(k)] and Î?[sup(k)]-Manifolds""; ""1.3. A Combinatorial Characterization of Î?[sup(k)]""; ""2. BASIC MOVES""; ""2.1. On LC[sup(k-1)]-Spaces and UV[sup(k-1)]-Maps""; ""2.2. The Isotopy Move and Verification of Axiom 1""; ""2.3. Absorbing Maps and Basic Properties of Î?[sup(k)]-Manifolds""; ""2.4. Building Partitions and Associated Maps""
""2.5. Connecting Intersections""""2.6. Correct Ordering""; ""2.7. Increasing the Connectivity of Partition Elements""; ""2.8 Some Easy Consequences""; ""3. THE Z-SET UNKNOTTING THEOREM""; ""3.1. The Z-set Unknotting Theorem""; ""3.2. Homogeneity of Î?[sup(k)]""; ""4. THE DECOMPOSITION THEORY OF MENGER MANIFOLDS""; ""4.1. The Z-set Shrinking Theorem""; ""4.2. The Ï?-Z-set Shrinking Theorem""; ""4.3. The Main Shrinking Theorem""; ""5. THE CHARACTERIZATION THEOREM""; ""5.1. The Resolution Theorem""; ""5.2. The Characterization Theorem""; ""6. NONCOMPACT MENGER MANIFOLDS""; ""APPENDIX""
""LIST OF REFERENCES""
Record Nr. UNINA-9910788885403321
Bestvina Mladen <1959->  
Providence, Rhode Island : , : American Mathematical Society, , 1988
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Characterizing k-dimensional universal Menger compacta / / Mladen Bestvina
Characterizing k-dimensional universal Menger compacta / / Mladen Bestvina
Autore Bestvina Mladen <1959->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1988
Descrizione fisica 1 online resource (121 p.)
Disciplina 514/.3
Collana Memoirs of the American Mathematical Society
Soggetto topico Metric spaces
Manifolds (Mathematics)
ISBN 1-4704-0800-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""TABLE OF CONTENTS""; ""INTRODUCTION""; ""DEFINITIONS AND NOTATION""; ""1. PARTITIONS""; ""1.1. Partitions on Compact PL-Manifolds (With Boundary)""; ""1.2. The Standard Construction of the Universal k-Dimensional Menger Space Î?[sup(k)] and Î?[sup(k)]-Manifolds""; ""1.3. A Combinatorial Characterization of Î?[sup(k)]""; ""2. BASIC MOVES""; ""2.1. On LC[sup(k-1)]-Spaces and UV[sup(k-1)]-Maps""; ""2.2. The Isotopy Move and Verification of Axiom 1""; ""2.3. Absorbing Maps and Basic Properties of Î?[sup(k)]-Manifolds""; ""2.4. Building Partitions and Associated Maps""
""2.5. Connecting Intersections""""2.6. Correct Ordering""; ""2.7. Increasing the Connectivity of Partition Elements""; ""2.8 Some Easy Consequences""; ""3. THE Z-SET UNKNOTTING THEOREM""; ""3.1. The Z-set Unknotting Theorem""; ""3.2. Homogeneity of Î?[sup(k)]""; ""4. THE DECOMPOSITION THEORY OF MENGER MANIFOLDS""; ""4.1. The Z-set Shrinking Theorem""; ""4.2. The Ï?-Z-set Shrinking Theorem""; ""4.3. The Main Shrinking Theorem""; ""5. THE CHARACTERIZATION THEOREM""; ""5.1. The Resolution Theorem""; ""5.2. The Characterization Theorem""; ""6. NONCOMPACT MENGER MANIFOLDS""; ""APPENDIX""
""LIST OF REFERENCES""
Record Nr. UNINA-9910828912603321
Bestvina Mladen <1959->  
Providence, Rhode Island : , : American Mathematical Society, , 1988
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui