top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Open microfluidics / / Jean Berthier, Kenneth A. Brakke, and Erwin Berthier
Open microfluidics / / Jean Berthier, Kenneth A. Brakke, and Erwin Berthier
Autore Berthier Jean <1952->
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , 2016
Descrizione fisica 1 online resource (330 p.)
Disciplina 532.05
Collana THEi Wiley ebooks
Soggetto topico Microfluidics
Capillaries - Physiology
ISBN 1-118-72082-2
1-118-72086-5
1-118-72093-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910134877403321
Berthier Jean <1952->  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Open microfluidics / / Jean Berthier, Kenneth A. Brakke, and Erwin Berthier
Open microfluidics / / Jean Berthier, Kenneth A. Brakke, and Erwin Berthier
Autore Berthier Jean <1952->
Pubbl/distr/stampa Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , 2016
Descrizione fisica 1 online resource (330 p.)
Disciplina 532.05
Collana THEi Wiley ebooks
Soggetto topico Microfluidics
Capillaries - Physiology
ISBN 1-118-72082-2
1-118-72086-5
1-118-72093-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910825021503321
Berthier Jean <1952->  
Hoboken, New Jersey ; ; Beverly, Massachusetts : , : John Wiley & Sons, Inc. : , : Scrivener Publishing LLC, , 2016
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Open-Channel Microfluidics (Second Edition) : Fundamentals and Applications
Open-Channel Microfluidics (Second Edition) : Fundamentals and Applications
Autore Berthier Jean
Edizione [2nd ed.]
Pubbl/distr/stampa Bristol : , : Institute of Physics Publishing, , 2024
Descrizione fisica 1 online resource (330 pages)
Altri autori (Persone) ThebergeAshleigh B
BerthierErwin
Collana IOP Ebooks Series
Soggetto topico Microfluidics
Capillarity
ISBN 9780750355070
0750355077
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- < -- named-book-part-body& -- #62 -- < -- p& -- #62 -- The rapid advancement of open microfluidics in recent years has prompted the need for updating our inaugural book, & -- #x0201C -- Open-Channel Microfluidics,& -- #x0201D -- initially published in 2019. Additionally, we aim to expand the scope of our earlier publication, & -- #x0201C -- Open Microfluidics,& -- #x0201D -- released in 2016, to encompass the examination of the dynamics associated with open capillary-driven microflows.< -- /p& -- #62 -- < -- p& -- #62 -- The second edition delves into capillary fl -- Acknowledgments -- Author biographies -- Jean Berthier -- Ashleigh B Theberge -- Erwin Berthier -- Foreword to the first edition -- Foreword to the second edition -- Outline placeholder -- I.1 Paper-based microfluidics -- I.2 Thread-based microfluidics -- I.3 Sessile droplet microfluidics -- I.4 Open-channel microfluidics -- I.5 Book contents -- References -- Chapter The theoretical basis of capillarity -- 1.1 Introduction -- 1.1.1 Surface tension -- 1.1.2 Laplace pressure -- 1.1.3 Liquid-liquid surface tension -- 1.1.4 Contact with solid surfaces: Young's law -- 1.1.5 Neumann's construction -- 1.1.6 The work of adhesion, the work of cohesion, and the Young-Dupré equation -- 1.1.7 Solid surface energy: Zisman's approach -- 1.1.8 Wetting and pinning -- 1.1.9 Wenzel's law -- 1.1.10 The Cassie-Baxter law -- 1.1.11 Capillary rise -- 1.1.12 Marangoni convection -- References -- Chapter The Lucas-Washburn-Bosanquet approach -- 2.1 Introduction -- 2.2 The Bosanquet equation -- 2.3 Simplification: inertial and viscous regimes -- 2.3.1 The inertial evanescent regime -- 2.3.2 The viscous regime: the Lucas-Washburn-Rideal law -- 2.3.3 Transition between the two regimes -- 2.3.4 Examples -- 2.4 The full Bosanquet solution.
2.5 Correcting for the dynamic contact angle -- 2.5.1 The dynamic contact angle -- 2.5.2 A dynamic contact angle correction to the Lucas-Washburn law -- 2.5.3 Graphical representation in 1/V -- 2.6 Conclusions -- References -- Chapter Condition for capillary flow in open channels -- 3.1 Spontaneous capillary flow in a monolithic channel -- 3.2 Spontaneous capillary flow in composite open channels: the generalized Cassie condition -- 3.3 Common geometries -- 3.4 Enhanced open-capillary flows -- 3.4.1 Fluid walls -- 3.4.2 Constant additional inlet pressure -- 3.4.3 Overfilled reservoir: initial additional Laplace pressure -- 3.5 Conclusions -- References -- Chapter Flow dynamics in open channels of uniform cross-section -- 4.1 Spontaneous capillary flow in composite, closed channels of arbitrary uniform cross-section -- 4.1.1 The Bosanquet equation and the average friction length -- 4.1.2 The inertial regime -- 4.1.3 The viscous regime -- 4.1.4 On the use of the hydraulic diameter -- 4.2 Spontaneous capillary flow in open channels of arbitrary uniform cross-section -- 4.2.1 The Bosanquet equation -- 4.2.2 The inertial regime -- 4.2.3 The viscous regime -- 4.2.4 An example -- 4.2.5 A comparison of the average friction lengths in closed and open channels -- 4.2.6 A numerical approach -- 4.3 The dynamic contact angle -- 4.3.1 A model for the relation between the travel distance and a varying dynamic contact angle -- 4.3.2 Experiments showing the dynamic contact angle -- 4.3.3 Experimental results and comparison with the model -- 4.3.4 A comparison with other correlations (Hoffman-Tanner, Bracke, Jiang) -- 4.4 Rough walls -- 4.4.1 Capillary force -- 4.4.2 Wall friction -- 4.4.3 Conclusions -- 4.5 A summary of the dynamics of capillary flow in an open channel -- 4.6 The capillary dynamics of non-Newtonian fluids -- 4.6.1 Shear-thinning fluids.
4.6.2 The case of whole blood -- 4.7 Representation in 1/V -- References -- Chapter Common open-channel geometries -- 5.1 Introduction -- 5.2 Suspended channels -- 5.3 Rails -- 5.4 Rectangular channels -- 5.4.1 The SCF condition -- 5.4.2 The generalized Cassie angle -- 5.4.3 Average friction length -- 5.4.4 The homothetical rule -- 5.4.5 Other approaches -- 5.4.6 Dynamics -- 5.5 Rounded channels -- 5.6 Semicylindrical channels -- 5.7 Embossed channels -- 5.8 Fiber bundles and flow caging -- 5.8.1 Two parallel rods -- 5.8.2 More than two parallel rods -- 5.9 Capillary rise and uphill open-capillary flows -- 5.9.1 Jurin's law for capillary rise -- 5.9.2 Uphill open-capillary flow -- 5.9.3 The dynamics of capillary rise -- 5.10 Conclusions -- References -- Chapter Capillary filaments -- 6.1 Introduction -- 6.2 Capillary filaments: the Concus-Finn condition -- 6.3 The case of V-grooves -- 6.4 Capillary filaments in open-channel turns -- 6.5 Capillary filaments in nonuniform channels -- 6.6 Detached capillary filaments -- 6.7 Metastable capillary filaments -- 6.8 Capillary filaments driving spontaneous capillary flow -- 6.9 The dynamics of capillary filaments -- 6.10 The drying of capillary filaments -- 6.11 Capillary filaments stopped by rounded wedges -- 6.11.1 Triangular open channels -- 6.11.2 Rectangular open channels -- 6.12 Conclusions -- References -- Chapter Flow in open channels of nonuniform cross-section -- 7.1 Static aspects -- 7.1.1 Spontaneous capillary flow in linearly widening and narrowing open channels -- 7.1.2 Sudden enlargement -- 7.1.3 Trigger valves -- 7.1.4 One-way wicking -- 7.2 Dynamic aspects -- 7.2.1 Open microflows dynamics in progressively widening and narrowing channels -- 7.2.2 Sudden constrictions and enlargements -- 7.3 Bifurcations and networks -- 7.3.1 Bifurcations -- 7.3.2 Networks and capillary pumps -- 7.4 Filters.
7.5 Open deterministic lateral devices -- 7.6 Example of blood plasma separation in a diverging channel -- 7.7 Conclusions -- References -- Chapter Capillary flow in fibrous media -- 8.1 Parameters characterizing the capillary flow in fibrous media -- 8.2 Flow dynamics in fibrous media -- 8.2.1 The Lucas-Washburn analogy -- 8.2.2 Darcy's law -- 8.3 Determining porosity, permeability, and capillary pressure -- 8.3.1 Porosity -- 8.3.2 Tortuosity -- 8.3.3 Permeability and capillary pressure -- 8.3.4 Compression (compaction) -- 8.4 Equivalent permeability -- 8.5 Flow velocity in paper strips of varying width -- 8.5.1 Paper pads of piecewise varying width -- 8.5.2 Triangular circular section pads -- 8.6 Open channels connected to paper pads -- 8.6.1 The root channel -- 8.6.2 Rectangular pads -- 8.6.3 Triangular (circular section) pads -- 8.6.4 Numerical application -- 8.6.5 Capillary trees connected to paper pads -- 8.7 Conclusions -- References and further reading -- Chapter Biomimetics-open microfluidics in nature -- 9.1 Introduction -- 9.2 Open channels on Dryopteris marginata leaves -- 9.3 Flow alongside Sarracenia trichomes -- 9.4 Directional spreading on natural surfaces -- 9.4.1 Directional spreading on cilia-a pinning-spreading story -- 9.4.2 Anisotropic microfluidics bioinspired by Morpho menelaus -- 9.4.3 The particular structure of the leaves of Nepenthes alata -- 9.4.4 The pinning paradox: the case of Araucaria leaves -- 9.5 Conclusions -- Supplementary information -- References -- Chapter Two-phase open-channel capillary flows -- 10.1 Introduction -- 10.2 Part 1: plugs and droplets in open channels of uniform cross-section -- 10.2.1 The quasi steady-state approach: the spontaneous capillary flow condition in the presence of plugs -- 10.2.2 Plug dynamics in open-channel capillary flows-an experimental approach -- 10.2.3 Summary.
10.2.4 Injecting a droplet/plug into an open flow -- 10.2.5 Capillary wagons -- 10.2.6 The case of capillary filaments -- 10.2.7 Bifurcations and bypasses -- 10.2.8 Capillary filaments and bifurcations, networks and bypasses -- 10.2.9 An introduction to two-phase microflows in nonuniform open channels -- 10.3 Part 2: the production and manipulation of droplets -- 10.3.1 Droplet emission -- 10.3.2 Droplet manipulation -- 10.4 Conclusions -- References -- Chapter Applications -- 11.1 Introduction -- 11.2 Materials and fabrication -- 11.3 Microfluidic channels -- 11.3.1 Capillary channels on paper -- 11.3.2 Smart textiles -- 11.3.3 3D-printed capillary structures -- 11.3.4 Directional steering of liquids -- 11.3.5 Evaporative capillary pumping -- 11.4 Biology, biotechnology, and medicine -- 11.4.1 Microdots for cell studies -- 11.4.2 Mimicking the lungs -- 11.4.3 Cellular microfluidics -- 11.5 Biosensors -- 11.5.1 Gel electrophoresis -- 11.5.2 In vivo sensors -- 11.5.3 Open-channel microfluidics for whole blood analysis -- 11.5.4 Biochemistry: liquid-liquid extraction -- 11.5.5 Aerosol sampling -- 11.6 A space-based application-the space cup -- 11.7 Conclusions -- References -- Chapter Open-capillary fluidics aboard spacecraft -- 12.1 Introduction -- 12.2 Statics: configurations, initial conditions, and stability -- 12.3 Dynamics: inertia and bubble separations -- 12.4 Applications of open macrofluidics aboard spacecraft -- 12.4.1 Bubble separation -- 12.4.2 CO2 scrubbing -- 12.4.3 Plant watering -- 12.4.4 Spacecraft WetLabs -- 12.5 Conclusions -- References -- Chapter Epilogue -- References.
Record Nr. UNINA-9911026078703321
Berthier Jean  
Bristol : , : Institute of Physics Publishing, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui