Micro-drops and digital microfluidics / / Jean Berthier
| Micro-drops and digital microfluidics / / Jean Berthier |
| Autore | Berthier Jean |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Waltham, Mass., : William Andrew, 2013 |
| Descrizione fisica | 1 online resource (480 p. ) : col. ill |
| Disciplina | 620.106 |
| Collana | Micro & nano technologies series |
| Soggetto topico |
Atomizers
Microfluidics - Equipment and supplies Spraying equipment Electrostatic atomization - Methodology Microelectromechanical systems Drops |
| ISBN |
1-283-85157-1
1-4557-2800-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Introduction: Digital Microfluidics in Today's Microfluidics Theory of Wetting The Physics of Droplets Electrowetting Theory EWOD Microsystems Introduction to Liquid Dielectrophoresis Electrowetting on Curved Surfaces Biological Applications of EWOD Cell Manipulations in EWOD Chemical Applications DMF for Optofluidic Microdevices Droplet on Deformable Surfaces - Elasto-Capillarity and Electro-Elasto-Capillarity Acoustic Methods for Manipulating Droplets Introduction to Droplet Microfluidics and Multiphase Microflows Epilog |
| Record Nr. | UNINA-9911006760103321 |
Berthier Jean
|
||
| Waltham, Mass., : William Andrew, 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Open-Channel Microfluidics (Second Edition) : Fundamentals and Applications
| Open-Channel Microfluidics (Second Edition) : Fundamentals and Applications |
| Autore | Berthier Jean |
| Edizione | [2nd ed.] |
| Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2024 |
| Descrizione fisica | 1 online resource (330 pages) |
| Altri autori (Persone) |
ThebergeAshleigh B
BerthierErwin |
| Collana | IOP Ebooks Series |
| Soggetto topico |
Microfluidics
Capillarity |
| ISBN |
9780750355070
0750355077 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- < -- named-book-part-body& -- #62 -- < -- p& -- #62 -- The rapid advancement of open microfluidics in recent years has prompted the need for updating our inaugural book, & -- #x0201C -- Open-Channel Microfluidics,& -- #x0201D -- initially published in 2019. Additionally, we aim to expand the scope of our earlier publication, & -- #x0201C -- Open Microfluidics,& -- #x0201D -- released in 2016, to encompass the examination of the dynamics associated with open capillary-driven microflows.< -- /p& -- #62 -- < -- p& -- #62 -- The second edition delves into capillary fl -- Acknowledgments -- Author biographies -- Jean Berthier -- Ashleigh B Theberge -- Erwin Berthier -- Foreword to the first edition -- Foreword to the second edition -- Outline placeholder -- I.1 Paper-based microfluidics -- I.2 Thread-based microfluidics -- I.3 Sessile droplet microfluidics -- I.4 Open-channel microfluidics -- I.5 Book contents -- References -- Chapter The theoretical basis of capillarity -- 1.1 Introduction -- 1.1.1 Surface tension -- 1.1.2 Laplace pressure -- 1.1.3 Liquid-liquid surface tension -- 1.1.4 Contact with solid surfaces: Young's law -- 1.1.5 Neumann's construction -- 1.1.6 The work of adhesion, the work of cohesion, and the Young-Dupré equation -- 1.1.7 Solid surface energy: Zisman's approach -- 1.1.8 Wetting and pinning -- 1.1.9 Wenzel's law -- 1.1.10 The Cassie-Baxter law -- 1.1.11 Capillary rise -- 1.1.12 Marangoni convection -- References -- Chapter The Lucas-Washburn-Bosanquet approach -- 2.1 Introduction -- 2.2 The Bosanquet equation -- 2.3 Simplification: inertial and viscous regimes -- 2.3.1 The inertial evanescent regime -- 2.3.2 The viscous regime: the Lucas-Washburn-Rideal law -- 2.3.3 Transition between the two regimes -- 2.3.4 Examples -- 2.4 The full Bosanquet solution.
2.5 Correcting for the dynamic contact angle -- 2.5.1 The dynamic contact angle -- 2.5.2 A dynamic contact angle correction to the Lucas-Washburn law -- 2.5.3 Graphical representation in 1/V -- 2.6 Conclusions -- References -- Chapter Condition for capillary flow in open channels -- 3.1 Spontaneous capillary flow in a monolithic channel -- 3.2 Spontaneous capillary flow in composite open channels: the generalized Cassie condition -- 3.3 Common geometries -- 3.4 Enhanced open-capillary flows -- 3.4.1 Fluid walls -- 3.4.2 Constant additional inlet pressure -- 3.4.3 Overfilled reservoir: initial additional Laplace pressure -- 3.5 Conclusions -- References -- Chapter Flow dynamics in open channels of uniform cross-section -- 4.1 Spontaneous capillary flow in composite, closed channels of arbitrary uniform cross-section -- 4.1.1 The Bosanquet equation and the average friction length -- 4.1.2 The inertial regime -- 4.1.3 The viscous regime -- 4.1.4 On the use of the hydraulic diameter -- 4.2 Spontaneous capillary flow in open channels of arbitrary uniform cross-section -- 4.2.1 The Bosanquet equation -- 4.2.2 The inertial regime -- 4.2.3 The viscous regime -- 4.2.4 An example -- 4.2.5 A comparison of the average friction lengths in closed and open channels -- 4.2.6 A numerical approach -- 4.3 The dynamic contact angle -- 4.3.1 A model for the relation between the travel distance and a varying dynamic contact angle -- 4.3.2 Experiments showing the dynamic contact angle -- 4.3.3 Experimental results and comparison with the model -- 4.3.4 A comparison with other correlations (Hoffman-Tanner, Bracke, Jiang) -- 4.4 Rough walls -- 4.4.1 Capillary force -- 4.4.2 Wall friction -- 4.4.3 Conclusions -- 4.5 A summary of the dynamics of capillary flow in an open channel -- 4.6 The capillary dynamics of non-Newtonian fluids -- 4.6.1 Shear-thinning fluids. 4.6.2 The case of whole blood -- 4.7 Representation in 1/V -- References -- Chapter Common open-channel geometries -- 5.1 Introduction -- 5.2 Suspended channels -- 5.3 Rails -- 5.4 Rectangular channels -- 5.4.1 The SCF condition -- 5.4.2 The generalized Cassie angle -- 5.4.3 Average friction length -- 5.4.4 The homothetical rule -- 5.4.5 Other approaches -- 5.4.6 Dynamics -- 5.5 Rounded channels -- 5.6 Semicylindrical channels -- 5.7 Embossed channels -- 5.8 Fiber bundles and flow caging -- 5.8.1 Two parallel rods -- 5.8.2 More than two parallel rods -- 5.9 Capillary rise and uphill open-capillary flows -- 5.9.1 Jurin's law for capillary rise -- 5.9.2 Uphill open-capillary flow -- 5.9.3 The dynamics of capillary rise -- 5.10 Conclusions -- References -- Chapter Capillary filaments -- 6.1 Introduction -- 6.2 Capillary filaments: the Concus-Finn condition -- 6.3 The case of V-grooves -- 6.4 Capillary filaments in open-channel turns -- 6.5 Capillary filaments in nonuniform channels -- 6.6 Detached capillary filaments -- 6.7 Metastable capillary filaments -- 6.8 Capillary filaments driving spontaneous capillary flow -- 6.9 The dynamics of capillary filaments -- 6.10 The drying of capillary filaments -- 6.11 Capillary filaments stopped by rounded wedges -- 6.11.1 Triangular open channels -- 6.11.2 Rectangular open channels -- 6.12 Conclusions -- References -- Chapter Flow in open channels of nonuniform cross-section -- 7.1 Static aspects -- 7.1.1 Spontaneous capillary flow in linearly widening and narrowing open channels -- 7.1.2 Sudden enlargement -- 7.1.3 Trigger valves -- 7.1.4 One-way wicking -- 7.2 Dynamic aspects -- 7.2.1 Open microflows dynamics in progressively widening and narrowing channels -- 7.2.2 Sudden constrictions and enlargements -- 7.3 Bifurcations and networks -- 7.3.1 Bifurcations -- 7.3.2 Networks and capillary pumps -- 7.4 Filters. 7.5 Open deterministic lateral devices -- 7.6 Example of blood plasma separation in a diverging channel -- 7.7 Conclusions -- References -- Chapter Capillary flow in fibrous media -- 8.1 Parameters characterizing the capillary flow in fibrous media -- 8.2 Flow dynamics in fibrous media -- 8.2.1 The Lucas-Washburn analogy -- 8.2.2 Darcy's law -- 8.3 Determining porosity, permeability, and capillary pressure -- 8.3.1 Porosity -- 8.3.2 Tortuosity -- 8.3.3 Permeability and capillary pressure -- 8.3.4 Compression (compaction) -- 8.4 Equivalent permeability -- 8.5 Flow velocity in paper strips of varying width -- 8.5.1 Paper pads of piecewise varying width -- 8.5.2 Triangular circular section pads -- 8.6 Open channels connected to paper pads -- 8.6.1 The root channel -- 8.6.2 Rectangular pads -- 8.6.3 Triangular (circular section) pads -- 8.6.4 Numerical application -- 8.6.5 Capillary trees connected to paper pads -- 8.7 Conclusions -- References and further reading -- Chapter Biomimetics-open microfluidics in nature -- 9.1 Introduction -- 9.2 Open channels on Dryopteris marginata leaves -- 9.3 Flow alongside Sarracenia trichomes -- 9.4 Directional spreading on natural surfaces -- 9.4.1 Directional spreading on cilia-a pinning-spreading story -- 9.4.2 Anisotropic microfluidics bioinspired by Morpho menelaus -- 9.4.3 The particular structure of the leaves of Nepenthes alata -- 9.4.4 The pinning paradox: the case of Araucaria leaves -- 9.5 Conclusions -- Supplementary information -- References -- Chapter Two-phase open-channel capillary flows -- 10.1 Introduction -- 10.2 Part 1: plugs and droplets in open channels of uniform cross-section -- 10.2.1 The quasi steady-state approach: the spontaneous capillary flow condition in the presence of plugs -- 10.2.2 Plug dynamics in open-channel capillary flows-an experimental approach -- 10.2.3 Summary. 10.2.4 Injecting a droplet/plug into an open flow -- 10.2.5 Capillary wagons -- 10.2.6 The case of capillary filaments -- 10.2.7 Bifurcations and bypasses -- 10.2.8 Capillary filaments and bifurcations, networks and bypasses -- 10.2.9 An introduction to two-phase microflows in nonuniform open channels -- 10.3 Part 2: the production and manipulation of droplets -- 10.3.1 Droplet emission -- 10.3.2 Droplet manipulation -- 10.4 Conclusions -- References -- Chapter Applications -- 11.1 Introduction -- 11.2 Materials and fabrication -- 11.3 Microfluidic channels -- 11.3.1 Capillary channels on paper -- 11.3.2 Smart textiles -- 11.3.3 3D-printed capillary structures -- 11.3.4 Directional steering of liquids -- 11.3.5 Evaporative capillary pumping -- 11.4 Biology, biotechnology, and medicine -- 11.4.1 Microdots for cell studies -- 11.4.2 Mimicking the lungs -- 11.4.3 Cellular microfluidics -- 11.5 Biosensors -- 11.5.1 Gel electrophoresis -- 11.5.2 In vivo sensors -- 11.5.3 Open-channel microfluidics for whole blood analysis -- 11.5.4 Biochemistry: liquid-liquid extraction -- 11.5.5 Aerosol sampling -- 11.6 A space-based application-the space cup -- 11.7 Conclusions -- References -- Chapter Open-capillary fluidics aboard spacecraft -- 12.1 Introduction -- 12.2 Statics: configurations, initial conditions, and stability -- 12.3 Dynamics: inertia and bubble separations -- 12.4 Applications of open macrofluidics aboard spacecraft -- 12.4.1 Bubble separation -- 12.4.2 CO2 scrubbing -- 12.4.3 Plant watering -- 12.4.4 Spacecraft WetLabs -- 12.5 Conclusions -- References -- Chapter Epilogue -- References. |
| Record Nr. | UNINA-9911026078703321 |
Berthier Jean
|
||
| Bristol : , : Institute of Physics Publishing, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||