The spectrum of hyperbolic surfaces / Nicolas Bergeron
| The spectrum of hyperbolic surfaces / Nicolas Bergeron |
| Autore | Bergeron, Nicolas |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | p. : ill. ; 24 cm |
| Soggetto topico |
35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020]
58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020] 35P20 - Asymptotic distribution of eigenvalues in context of PDEs [MSC 2020] 11F72 - Spectral theory; trace formulas (e.g., that of Selberg) [MSC 2020] 11M36 - Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas) [MSC 2020] 58J51 - Relations between spectral theory and ergodic theory, e.g. quantum unique ergodicity [MSC 2020] 35R01 - PDEs on manifolds [MSC 2020] |
| Soggetto non controllato |
Arithmetic manifolds
Hyperbolic surfaces Laplacian Maass forms Quantum Chaos Selberg trace formula |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN0115437 |
Bergeron, Nicolas
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The spectrum of hyperbolic surfaces / Nicolas Bergeron
| The spectrum of hyperbolic surfaces / Nicolas Bergeron |
| Autore | Bergeron, Nicolas |
| Pubbl/distr/stampa | [Cham], : Springer, 2016 |
| Descrizione fisica | p. : ill. ; 24 cm |
| Soggetto topico |
11F72 - Spectral theory; trace formulas (e.g., that of Selberg) [MSC 2020]
11M36 - Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas) [MSC 2020] 35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020] 35P20 - Asymptotic distribution of eigenvalues in context of PDEs [MSC 2020] 35R01 - PDEs on manifolds [MSC 2020] 58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020] 58J51 - Relations between spectral theory and ergodic theory, e.g. quantum unique ergodicity [MSC 2020] |
| Soggetto non controllato |
Arithmetic manifolds
Hyperbolic surfaces Laplacian Maass forms Quantum Chaos Selberg trace formula |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-VAN00115437 |
Bergeron, Nicolas
|
||
| [Cham], : Springer, 2016 | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||
The spectrum of hyperbolic surfaces / Nicolas Bergeron
| The spectrum of hyperbolic surfaces / Nicolas Bergeron |
| Autore | Bergeron, Nicolas |
| Edizione | [[Cham] : Springer, 2016] |
| Pubbl/distr/stampa | p., : ill. ; 24 cm |
| Descrizione fisica | Pubblicazione in formato elettronico |
| Soggetto topico |
35P15 - Estimation of eigenvalues in context of PDEs [MSC 2020]
58J50 - Spectral problems; spectral geometry; scattering theory on manifolds [MSC 2020] 35P20 - Asymptotic distribution of eigenvalues in context of PDEs [MSC 2020] 11F72 - Spectral theory; trace formulas (e.g., that of Selberg) [MSC 2020] 11M36 - Selberg zeta functions and regularized determinants; applications to spectral theory, Dirichlet series, Eisenstein series, etc. (explicit formulas) [MSC 2020] 58J51 - Relations between spectral theory and ergodic theory, e.g. quantum unique ergodicity [MSC 2020] 35R01 - PDEs on manifolds [MSC 2020] |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Titolo uniforme | |
| Record Nr. | UNICAMPANIA-SUN0115437 |
Bergeron, Nicolas
|
||
| p., : ill. ; 24 cm | ||
| Lo trovi qui: Univ. Vanvitelli | ||
| ||