An introduction to optimal designs for social and biomedical research [[electronic resource] /] / Martijn P.F. Berger, Weng Kee Wong |
Autore | Berger Martijn P. F |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, 2009 |
Descrizione fisica | 1 online resource (348 p.) |
Disciplina | 300.72 |
Altri autori (Persone) | WongWeng Kee |
Collana | Statistics in Practice |
Soggetto topico |
Social sciences - Research
Biology - Research Optimal designs (Statistics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-282-18889-5
9786612188893 0-470-74691-2 0-470-74692-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
An Introduction to Optimal Designs for Social and Biomedical Research; Contents; Preface; Acknowledgements; 1 Introduction to designs; 1.1 Introduction; 1.2 Stages of the research process; 1.2.1 Choice of a 'good' design; 1.3 Research design; 1.3.1 Choice of independent variables and levels; 1.3.2 Units of analysis; 1.3.3 Variables; 1.3.4 Replication; 1.4 Types of research designs; 1.5 Requirements for a 'good' design; 1.5.1 Statistical conclusion validity; 1.5.2 Internal validity; 1.5.3 Control of (unwanted) variation; 1.6 Ethical aspects of design choice
1.7 Exact versus approximate designs1.8 Examples; 1.8.1 Radiation dosage example; 1.8.2 Designs for the Poggendorff and Ponzo illusion experiments; 1.8.3 Uncertainty about best .tting regression models; 1.8.4 Designs for a priori contrasts among composite faces; 1.8.5 Designs for calibration of item parameters in item response theory models; 1.9 Summary; 2 Designs for simple linear regression; 2.1 Design problem for a linear model; 2.1.1 The design; 2.1.2 The linear regression model; 2.1.3 Estimation of parameters and efficiency; 2.2 Designs for radiation-dosage example 2.3 Relative efficiency and sample size2.4 Simultaneous inference; 2.5 Optimality criteria; 2.5.1 D-optimality criterion; 2.5.2 A-optimality criterion; 2.5.3 G-optimality criterion; 2.5.4 E-optimality criterion; 2.5.5 Number of distinct design points; 2.6 Relative efficiency; 2.7 Matrix formulation of designs for linear regression; 2.8 Summary; 3 Designs for multiple linear regression analysis; 3.1 Design problem for multiple linear regression; 3.1.1 The design; 3.1.2 The multiple linear regression model; 3.1.3 Estimation of parameters and ef.ciency; 3.2 Designs for vocabulary-growth study 3.3 Relative efficiency and sample size3.4 Simultaneous inference; 3.5 Optimality criteria for a subset of parameters; 3.6 Relative efficiency; 3.7 Designs for polynomial regression model; 3.7.1 Exact D-optimal designs for a quadratic regression model; 3.7.2 Scale dependency of A- and E-optimality criteria; 3.8 The Poggendorff and Ponzo illusion study; 3.9 Uncertainty about best .tting regression models; 3.10 Matrix notation of designs for multiple regression models; 3.10.1 Design for regression models with two independent variables 3.10.2 Design for regression models with two non-additive independent variables3.11 Summary; 4 Designs for analysis of variance models; 4.1 A typical design problem for an analysis of variance model; 4.1.1 The design; 4.1.2 The analysis of variance model; 4.1.3 Formulation of an ANOVA model as a regression model; 4.2 Estimation of parameters and efficiency; 4.2.1 Measures of uncertainty; 4.3 Simultaneous inference and optimality criteria; 4.4 Designs for groups under stress study; 4.4.1 A priori planned unequal sample sizes; 4.4.2 Not planned unequal sample sizes 4.5 Specific hypotheses and contrasts |
Record Nr. | UNINA-9910139920003321 |
Berger Martijn P. F | ||
Hoboken, NJ, : Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to optimal designs for social and biomedical research [[electronic resource] /] / Martijn P.F. Berger, Weng Kee Wong |
Autore | Berger Martijn P. F |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, 2009 |
Descrizione fisica | 1 online resource (348 p.) |
Disciplina | 300.72 |
Altri autori (Persone) | WongWeng Kee |
Collana | Statistics in Practice |
Soggetto topico |
Social sciences - Research
Biology - Research Optimal designs (Statistics) |
ISBN |
1-282-18889-5
9786612188893 0-470-74691-2 0-470-74692-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
An Introduction to Optimal Designs for Social and Biomedical Research; Contents; Preface; Acknowledgements; 1 Introduction to designs; 1.1 Introduction; 1.2 Stages of the research process; 1.2.1 Choice of a 'good' design; 1.3 Research design; 1.3.1 Choice of independent variables and levels; 1.3.2 Units of analysis; 1.3.3 Variables; 1.3.4 Replication; 1.4 Types of research designs; 1.5 Requirements for a 'good' design; 1.5.1 Statistical conclusion validity; 1.5.2 Internal validity; 1.5.3 Control of (unwanted) variation; 1.6 Ethical aspects of design choice
1.7 Exact versus approximate designs1.8 Examples; 1.8.1 Radiation dosage example; 1.8.2 Designs for the Poggendorff and Ponzo illusion experiments; 1.8.3 Uncertainty about best .tting regression models; 1.8.4 Designs for a priori contrasts among composite faces; 1.8.5 Designs for calibration of item parameters in item response theory models; 1.9 Summary; 2 Designs for simple linear regression; 2.1 Design problem for a linear model; 2.1.1 The design; 2.1.2 The linear regression model; 2.1.3 Estimation of parameters and efficiency; 2.2 Designs for radiation-dosage example 2.3 Relative efficiency and sample size2.4 Simultaneous inference; 2.5 Optimality criteria; 2.5.1 D-optimality criterion; 2.5.2 A-optimality criterion; 2.5.3 G-optimality criterion; 2.5.4 E-optimality criterion; 2.5.5 Number of distinct design points; 2.6 Relative efficiency; 2.7 Matrix formulation of designs for linear regression; 2.8 Summary; 3 Designs for multiple linear regression analysis; 3.1 Design problem for multiple linear regression; 3.1.1 The design; 3.1.2 The multiple linear regression model; 3.1.3 Estimation of parameters and ef.ciency; 3.2 Designs for vocabulary-growth study 3.3 Relative efficiency and sample size3.4 Simultaneous inference; 3.5 Optimality criteria for a subset of parameters; 3.6 Relative efficiency; 3.7 Designs for polynomial regression model; 3.7.1 Exact D-optimal designs for a quadratic regression model; 3.7.2 Scale dependency of A- and E-optimality criteria; 3.8 The Poggendorff and Ponzo illusion study; 3.9 Uncertainty about best .tting regression models; 3.10 Matrix notation of designs for multiple regression models; 3.10.1 Design for regression models with two independent variables 3.10.2 Design for regression models with two non-additive independent variables3.11 Summary; 4 Designs for analysis of variance models; 4.1 A typical design problem for an analysis of variance model; 4.1.1 The design; 4.1.2 The analysis of variance model; 4.1.3 Formulation of an ANOVA model as a regression model; 4.2 Estimation of parameters and efficiency; 4.2.1 Measures of uncertainty; 4.3 Simultaneous inference and optimality criteria; 4.4 Designs for groups under stress study; 4.4.1 A priori planned unequal sample sizes; 4.4.2 Not planned unequal sample sizes 4.5 Specific hypotheses and contrasts |
Record Nr. | UNINA-9910830940503321 |
Berger Martijn P. F | ||
Hoboken, NJ, : Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
An introduction to optimal designs for social and biomedical research / / Martijn P.F. Berger, Weng Kee Wong |
Autore | Berger Martijn P. F |
Pubbl/distr/stampa | Hoboken, NJ, : Wiley, 2009 |
Descrizione fisica | 1 online resource (348 p.) |
Disciplina | 300.72 |
Altri autori (Persone) | WongWeng Kee |
Collana | Statistics in Practice |
Soggetto topico |
Social sciences - Research
Biology - Research Optimal designs (Statistics) |
ISBN |
1-282-18889-5
9786612188893 0-470-74691-2 0-470-74692-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
An Introduction to Optimal Designs for Social and Biomedical Research; Contents; Preface; Acknowledgements; 1 Introduction to designs; 1.1 Introduction; 1.2 Stages of the research process; 1.2.1 Choice of a 'good' design; 1.3 Research design; 1.3.1 Choice of independent variables and levels; 1.3.2 Units of analysis; 1.3.3 Variables; 1.3.4 Replication; 1.4 Types of research designs; 1.5 Requirements for a 'good' design; 1.5.1 Statistical conclusion validity; 1.5.2 Internal validity; 1.5.3 Control of (unwanted) variation; 1.6 Ethical aspects of design choice
1.7 Exact versus approximate designs1.8 Examples; 1.8.1 Radiation dosage example; 1.8.2 Designs for the Poggendorff and Ponzo illusion experiments; 1.8.3 Uncertainty about best .tting regression models; 1.8.4 Designs for a priori contrasts among composite faces; 1.8.5 Designs for calibration of item parameters in item response theory models; 1.9 Summary; 2 Designs for simple linear regression; 2.1 Design problem for a linear model; 2.1.1 The design; 2.1.2 The linear regression model; 2.1.3 Estimation of parameters and efficiency; 2.2 Designs for radiation-dosage example 2.3 Relative efficiency and sample size2.4 Simultaneous inference; 2.5 Optimality criteria; 2.5.1 D-optimality criterion; 2.5.2 A-optimality criterion; 2.5.3 G-optimality criterion; 2.5.4 E-optimality criterion; 2.5.5 Number of distinct design points; 2.6 Relative efficiency; 2.7 Matrix formulation of designs for linear regression; 2.8 Summary; 3 Designs for multiple linear regression analysis; 3.1 Design problem for multiple linear regression; 3.1.1 The design; 3.1.2 The multiple linear regression model; 3.1.3 Estimation of parameters and ef.ciency; 3.2 Designs for vocabulary-growth study 3.3 Relative efficiency and sample size3.4 Simultaneous inference; 3.5 Optimality criteria for a subset of parameters; 3.6 Relative efficiency; 3.7 Designs for polynomial regression model; 3.7.1 Exact D-optimal designs for a quadratic regression model; 3.7.2 Scale dependency of A- and E-optimality criteria; 3.8 The Poggendorff and Ponzo illusion study; 3.9 Uncertainty about best .tting regression models; 3.10 Matrix notation of designs for multiple regression models; 3.10.1 Design for regression models with two independent variables 3.10.2 Design for regression models with two non-additive independent variables3.11 Summary; 4 Designs for analysis of variance models; 4.1 A typical design problem for an analysis of variance model; 4.1.1 The design; 4.1.2 The analysis of variance model; 4.1.3 Formulation of an ANOVA model as a regression model; 4.2 Estimation of parameters and efficiency; 4.2.1 Measures of uncertainty; 4.3 Simultaneous inference and optimality criteria; 4.4 Designs for groups under stress study; 4.4.1 A priori planned unequal sample sizes; 4.4.2 Not planned unequal sample sizes 4.5 Specific hypotheses and contrasts |
Record Nr. | UNINA-9910877667703321 |
Berger Martijn P. F | ||
Hoboken, NJ, : Wiley, 2009 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|