top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The fourier-analytic proof of quadratic reciprocity / / Michael C. Berg
The fourier-analytic proof of quadratic reciprocity / / Michael C. Berg
Autore Berg Michael C. <1955->
Pubbl/distr/stampa New York, New York : , : John Wiley & Sons, Inc., , 2000
Descrizione fisica 1 online resource (142 p.)
Disciplina 512.74
Collana Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts
Soggetto topico Reciprocity theorems
Soggetto genere / forma Electronic books.
ISBN 1-118-03294-2
1-118-03119-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Fourier-Analytic Proof of Quadratic Reciprocity; Contents; PREFACE; ACKNOWLEDGMENTS; INTRODUCTION; 1. Hecke's Proof of Quadratic Reciprocity; 1.1 Hecke υ-functions and Their Functional Equation; 1.2 Gauss (-Hecke) Sums; 1.3 Relative Quadratic Reciprocity; 1.4 Endnotes to Chapter; 2. Two Equivalent Forms of Quadratic Reciprocity; 3. The Stone-Von Neumann Theorem; 3.1 The Finite Case: A Paradigm; 3.2 The Locally Compact Abelian Case: Some Remarks; 3.3 The Form of the Stone-Von Neumann Theorem Used in 4.1; 4. Weil's ""Acta"" Paper; 4.1 Heisenberg Groups
4.2 A Heisenberg Group and A Group of Unitary Operators4.3 The Kernel of π; 4.4 Second-Degree Characters; 4.5 The Splitting of π on a Distinguished Subgroup of B(G); 4.6 Vector Spaces Over Local Fields; 4.7 Quaternions Over a Local Field; 4.8 Hilbert Reciprocity; 4.9 The Stone-Von Neumann Theorem Revisited; 4.10 The Double Cover of the Symplectic Group; 4.11 Endnotes to Chapter; 5. Kubota and Cohomology; 5.1 Weil Revisited; 5.2 Kubota's Cocycle; 5.3 The Splitting of αA Over SL(2, k); 5.4 2-Hilbert Reciprocity Once Again; 6. The Algebraic Agreement Between the Formalisms of Weil and Kubota
6.1 The Gruesome Diagram6.2 The Even More Gruesome Diagram; 7. Hecke's Challenge: General Reciprocity and Fourier Analysis on the March; BIBLIOGRAPHY; INDEX
Record Nr. UNINA-9910141242203321
Berg Michael C. <1955->  
New York, New York : , : John Wiley & Sons, Inc., , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The fourier-analytic proof of quadratic reciprocity / / Michael C. Berg
The fourier-analytic proof of quadratic reciprocity / / Michael C. Berg
Autore Berg Michael C. <1955->
Pubbl/distr/stampa New York, New York : , : John Wiley & Sons, Inc., , 2000
Descrizione fisica 1 online resource (142 p.)
Disciplina 512.74
Collana Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts
Soggetto topico Reciprocity theorems
ISBN 1-118-03294-2
1-118-03119-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Fourier-Analytic Proof of Quadratic Reciprocity; Contents; PREFACE; ACKNOWLEDGMENTS; INTRODUCTION; 1. Hecke's Proof of Quadratic Reciprocity; 1.1 Hecke υ-functions and Their Functional Equation; 1.2 Gauss (-Hecke) Sums; 1.3 Relative Quadratic Reciprocity; 1.4 Endnotes to Chapter; 2. Two Equivalent Forms of Quadratic Reciprocity; 3. The Stone-Von Neumann Theorem; 3.1 The Finite Case: A Paradigm; 3.2 The Locally Compact Abelian Case: Some Remarks; 3.3 The Form of the Stone-Von Neumann Theorem Used in 4.1; 4. Weil's ""Acta"" Paper; 4.1 Heisenberg Groups
4.2 A Heisenberg Group and A Group of Unitary Operators4.3 The Kernel of π; 4.4 Second-Degree Characters; 4.5 The Splitting of π on a Distinguished Subgroup of B(G); 4.6 Vector Spaces Over Local Fields; 4.7 Quaternions Over a Local Field; 4.8 Hilbert Reciprocity; 4.9 The Stone-Von Neumann Theorem Revisited; 4.10 The Double Cover of the Symplectic Group; 4.11 Endnotes to Chapter; 5. Kubota and Cohomology; 5.1 Weil Revisited; 5.2 Kubota's Cocycle; 5.3 The Splitting of αA Over SL(2, k); 5.4 2-Hilbert Reciprocity Once Again; 6. The Algebraic Agreement Between the Formalisms of Weil and Kubota
6.1 The Gruesome Diagram6.2 The Even More Gruesome Diagram; 7. Hecke's Challenge: General Reciprocity and Fourier Analysis on the March; BIBLIOGRAPHY; INDEX
Record Nr. UNISA-996205526203316
Berg Michael C. <1955->  
New York, New York : , : John Wiley & Sons, Inc., , 2000
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
The fourier-analytic proof of quadratic reciprocity / / Michael C. Berg
The fourier-analytic proof of quadratic reciprocity / / Michael C. Berg
Autore Berg Michael C. <1955->
Pubbl/distr/stampa New York, New York : , : John Wiley & Sons, Inc., , 2000
Descrizione fisica 1 online resource (142 p.)
Disciplina 512.74
Collana Pure and Applied Mathematics: A Wiley-Interscience Series of Texts, Monographs and Tracts
Soggetto topico Reciprocity theorems
ISBN 1-118-03294-2
1-118-03119-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto The Fourier-Analytic Proof of Quadratic Reciprocity; Contents; PREFACE; ACKNOWLEDGMENTS; INTRODUCTION; 1. Hecke's Proof of Quadratic Reciprocity; 1.1 Hecke υ-functions and Their Functional Equation; 1.2 Gauss (-Hecke) Sums; 1.3 Relative Quadratic Reciprocity; 1.4 Endnotes to Chapter; 2. Two Equivalent Forms of Quadratic Reciprocity; 3. The Stone-Von Neumann Theorem; 3.1 The Finite Case: A Paradigm; 3.2 The Locally Compact Abelian Case: Some Remarks; 3.3 The Form of the Stone-Von Neumann Theorem Used in 4.1; 4. Weil's ""Acta"" Paper; 4.1 Heisenberg Groups
4.2 A Heisenberg Group and A Group of Unitary Operators4.3 The Kernel of π; 4.4 Second-Degree Characters; 4.5 The Splitting of π on a Distinguished Subgroup of B(G); 4.6 Vector Spaces Over Local Fields; 4.7 Quaternions Over a Local Field; 4.8 Hilbert Reciprocity; 4.9 The Stone-Von Neumann Theorem Revisited; 4.10 The Double Cover of the Symplectic Group; 4.11 Endnotes to Chapter; 5. Kubota and Cohomology; 5.1 Weil Revisited; 5.2 Kubota's Cocycle; 5.3 The Splitting of αA Over SL(2, k); 5.4 2-Hilbert Reciprocity Once Again; 6. The Algebraic Agreement Between the Formalisms of Weil and Kubota
6.1 The Gruesome Diagram6.2 The Even More Gruesome Diagram; 7. Hecke's Challenge: General Reciprocity and Fourier Analysis on the March; BIBLIOGRAPHY; INDEX
Record Nr. UNINA-9910829889303321
Berg Michael C. <1955->  
New York, New York : , : John Wiley & Sons, Inc., , 2000
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui