Internal variables in thermoelasticity / / by Arkadi Berezovski, Peter Ván |
Autore | Berezovski Arkadi |
Edizione | [1st ed. 2017.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 |
Descrizione fisica | 1 online resource (VIII, 220 p. 37 illus.) |
Disciplina | 531.382 |
Collana | Solid Mechanics and Its Applications |
Soggetto topico |
Mechanics
Mechanics, Applied Thermodynamics Heat engineering Heat transfer Mass transfer Continuum physics Mathematical physics Mathematical models Solid Mechanics Engineering Thermodynamics, Heat and Mass Transfer Classical and Continuum Physics Mathematical Applications in the Physical Sciences Mathematical Modeling and Industrial Mathematics |
ISBN | 3-319-56934-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Part I Internal variables in thermomechanics -- 2 Introduction -- 3 Thermomechanical single internal variable theory -- 4 Dual internal variables -- Part II Dispersive elastic waves in one dimension -- 5 Internal variables and microinertia -- 6 Dispersive elastic waves -- 7 One-dimensional microelasticity -- 8 Influence of nonlinearity -- Part III Thermal effects -- 9 The role of heterogeneity in heat pulse propagation in a solid with inner structure -- 10 Heat conduction in microstructured solids -- 11 One-dimensional thermoelasticity with dual internal variables -- 12 Influence of microstructure on thermoelastic wave propagation -- Part IV Weakly nonlocal thermoelasticity for microstructured solids -- 13 Microdeformation and microtemperature -- Appendix A: Sketch of thermostatics -- Appendix B: Finite-volume numerical algorithm -- Index. |
Record Nr. | UNINA-9910254313403321 |
Berezovski Arkadi | ||
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Numerical simulation of waves and fronts in inhomogeneous solids [[electronic resource] /] / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin |
Autore | Berezovski Arkadi |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (236 p.) |
Disciplina | 530.4/12 |
Altri autori (Persone) |
EngelbrechtJuri
MauginG. A <1944-> (Gerard A.) |
Collana | World Scientific series on nonlinear science |
Soggetto topico |
Elastic solids
Inhomogeneous materials Wave-motion, Theory of |
Soggetto genere / forma | Electronic books. |
ISBN |
1-281-96830-7
9786611968304 981-283-268-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Introduction; 1.1 Waves and fronts; 1.2 True and quasi-inhomogeneities; 1.3 Driving force and the corresponding dissipation; 1.4 Example of a straight brittle crack; 1.5 Example of a phase-transition front; 1.6 Numerical simulations of moving discontinuities; 1.7 Outline of the book; 2. Material Inhomogeneities in Thermomechanics; 2.1 Kinematics; 2.2 Integral balance laws; 2.3 Localization and jump relations; 2.3.1 Local balance laws; 2.3.2 Jump relations; 2.3.3 Constitutive relations; 2.4 True and quasi-material inhomogeneities; 2.4.1 Balance of pseudomomentum
2.5 Brittle fracture2.5.1 Straight brittle crack; 2.6 Phase-transition fronts; 2.6.1 Jump relations; 2.6.2 Driving force; 2.7 On the exploitation of Eshelby's stress in isothermal and adiabatic conditions; 2.7.1 Driving force at singular surface in adiabatic conditions; 2.7.2 Another approach to the driving force; 2.8 Concluding remarks; 3. Local Phase Equilibrium and Jump Relations at Moving Discontinuities; 3.1 Intrinsic stability of simple systems; 3.2 Local phase equilibrium; 3.2.1 Classical equilibrium conditions; 3.2.2 Local equilibrium jump relations; 3.3 Non-equilibrium states 3.4 Local equilibrium jump relations at discontinuity3.5 Excess quantities at a moving discontinuity; 3.6 Velocity of moving discontinuity; 3.7 Concluding remarks; 4. Linear Thermoelasticity; 4.1 Local balance laws; 4.2 Balance of pseudomomentum; 4.3 Jump relations; 4.4 Wave-propagation algorithm: an example of finite volume methods; 4.4.1 One-dimensional elasticity; 4.4.2 Averaged quantities; 4.4.3 Numerical fluxes; 4.4.4 Second order corrections; 4.4.5 Conservative wave propagation algorithm; 4.5 Local equilibrium approximation; 4.5.1 Excess quantities and numerical fluxes 4.5.2 Riemann problem4.5.3 Excess quantities at the boundaries between cells; 4.6 Concluding remarks; 5. Wave Propagation in Inhomogeneous Solids; 5.1 Governing equations; 5.2 One-dimensional waves in periodic media; 5.3 One-dimensional weakly nonlinear waves in periodic media; 5.4 One-dimensional linear waves in laminates; 5.5 Nonlinear elastic wave in laminates under impact loading; 5.5.1 Problem formulation; 5.5.2 Comparison with experimental data; 5.5.3 Discussion of results; 5.6 Waves in functionally graded materials; 5.7 Concluding remarks 6. Macroscopic Dynamics of Phase-Transition Fronts6.1 Isothermal impact-induced front propagation; 6.1.1 Uniaxial motion of a slab; 6.1.2 Excess quantities in the bulk; 6.1.3 Excess quantities at the phase boundary; 6.1.4 Initiation criterion for the stress-induced phase transformation; 6.1.5 Velocity of the phase boundary; 6.2 Numerical simulations; 6.2.1 Algorithm description; 6.2.2 Comparison with experimental data; 6.3 Interaction of a plane wave with phase boundary; 6.3.1 Pseudoelastic behavior; 6.4 One-dimensional adiabatic fronts in a bar; 6.4.1 Formulation of the problem 6.4.2 Adiabatic approximation |
Record Nr. | UNINA-9910453831303321 |
Berezovski Arkadi | ||
Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Numerical simulation of waves and fronts in inhomogeneous solids [[electronic resource] /] / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin |
Autore | Berezovski Arkadi |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (236 p.) |
Disciplina | 530.4/12 |
Altri autori (Persone) |
EngelbrechtJuri
MauginG. A <1944-> (Gerard A.) |
Collana | World Scientific series on nonlinear science |
Soggetto topico |
Elastic solids
Inhomogeneous materials Wave-motion, Theory of |
ISBN |
1-281-96830-7
9786611968304 981-283-268-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Introduction; 1.1 Waves and fronts; 1.2 True and quasi-inhomogeneities; 1.3 Driving force and the corresponding dissipation; 1.4 Example of a straight brittle crack; 1.5 Example of a phase-transition front; 1.6 Numerical simulations of moving discontinuities; 1.7 Outline of the book; 2. Material Inhomogeneities in Thermomechanics; 2.1 Kinematics; 2.2 Integral balance laws; 2.3 Localization and jump relations; 2.3.1 Local balance laws; 2.3.2 Jump relations; 2.3.3 Constitutive relations; 2.4 True and quasi-material inhomogeneities; 2.4.1 Balance of pseudomomentum
2.5 Brittle fracture2.5.1 Straight brittle crack; 2.6 Phase-transition fronts; 2.6.1 Jump relations; 2.6.2 Driving force; 2.7 On the exploitation of Eshelby's stress in isothermal and adiabatic conditions; 2.7.1 Driving force at singular surface in adiabatic conditions; 2.7.2 Another approach to the driving force; 2.8 Concluding remarks; 3. Local Phase Equilibrium and Jump Relations at Moving Discontinuities; 3.1 Intrinsic stability of simple systems; 3.2 Local phase equilibrium; 3.2.1 Classical equilibrium conditions; 3.2.2 Local equilibrium jump relations; 3.3 Non-equilibrium states 3.4 Local equilibrium jump relations at discontinuity3.5 Excess quantities at a moving discontinuity; 3.6 Velocity of moving discontinuity; 3.7 Concluding remarks; 4. Linear Thermoelasticity; 4.1 Local balance laws; 4.2 Balance of pseudomomentum; 4.3 Jump relations; 4.4 Wave-propagation algorithm: an example of finite volume methods; 4.4.1 One-dimensional elasticity; 4.4.2 Averaged quantities; 4.4.3 Numerical fluxes; 4.4.4 Second order corrections; 4.4.5 Conservative wave propagation algorithm; 4.5 Local equilibrium approximation; 4.5.1 Excess quantities and numerical fluxes 4.5.2 Riemann problem4.5.3 Excess quantities at the boundaries between cells; 4.6 Concluding remarks; 5. Wave Propagation in Inhomogeneous Solids; 5.1 Governing equations; 5.2 One-dimensional waves in periodic media; 5.3 One-dimensional weakly nonlinear waves in periodic media; 5.4 One-dimensional linear waves in laminates; 5.5 Nonlinear elastic wave in laminates under impact loading; 5.5.1 Problem formulation; 5.5.2 Comparison with experimental data; 5.5.3 Discussion of results; 5.6 Waves in functionally graded materials; 5.7 Concluding remarks 6. Macroscopic Dynamics of Phase-Transition Fronts6.1 Isothermal impact-induced front propagation; 6.1.1 Uniaxial motion of a slab; 6.1.2 Excess quantities in the bulk; 6.1.3 Excess quantities at the phase boundary; 6.1.4 Initiation criterion for the stress-induced phase transformation; 6.1.5 Velocity of the phase boundary; 6.2 Numerical simulations; 6.2.1 Algorithm description; 6.2.2 Comparison with experimental data; 6.3 Interaction of a plane wave with phase boundary; 6.3.1 Pseudoelastic behavior; 6.4 One-dimensional adiabatic fronts in a bar; 6.4.1 Formulation of the problem 6.4.2 Adiabatic approximation |
Record Nr. | UNINA-9910782226603321 |
Berezovski Arkadi | ||
Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Numerical simulation of waves and fronts in inhomogeneous solids / / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin |
Autore | Berezovski Arkadi |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Hackensack, NJ, : World Scientific, c2008 |
Descrizione fisica | 1 online resource (236 p.) |
Disciplina | 530.4/12 |
Altri autori (Persone) |
EngelbrechtJuri
MauginG. A <1944-> (Gerard A.) |
Collana | World Scientific series on nonlinear science |
Soggetto topico |
Elastic solids
Inhomogeneous materials Wave-motion, Theory of |
ISBN |
1-281-96830-7
9786611968304 981-283-268-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Preface; Contents; 1. Introduction; 1.1 Waves and fronts; 1.2 True and quasi-inhomogeneities; 1.3 Driving force and the corresponding dissipation; 1.4 Example of a straight brittle crack; 1.5 Example of a phase-transition front; 1.6 Numerical simulations of moving discontinuities; 1.7 Outline of the book; 2. Material Inhomogeneities in Thermomechanics; 2.1 Kinematics; 2.2 Integral balance laws; 2.3 Localization and jump relations; 2.3.1 Local balance laws; 2.3.2 Jump relations; 2.3.3 Constitutive relations; 2.4 True and quasi-material inhomogeneities; 2.4.1 Balance of pseudomomentum
2.5 Brittle fracture2.5.1 Straight brittle crack; 2.6 Phase-transition fronts; 2.6.1 Jump relations; 2.6.2 Driving force; 2.7 On the exploitation of Eshelby's stress in isothermal and adiabatic conditions; 2.7.1 Driving force at singular surface in adiabatic conditions; 2.7.2 Another approach to the driving force; 2.8 Concluding remarks; 3. Local Phase Equilibrium and Jump Relations at Moving Discontinuities; 3.1 Intrinsic stability of simple systems; 3.2 Local phase equilibrium; 3.2.1 Classical equilibrium conditions; 3.2.2 Local equilibrium jump relations; 3.3 Non-equilibrium states 3.4 Local equilibrium jump relations at discontinuity3.5 Excess quantities at a moving discontinuity; 3.6 Velocity of moving discontinuity; 3.7 Concluding remarks; 4. Linear Thermoelasticity; 4.1 Local balance laws; 4.2 Balance of pseudomomentum; 4.3 Jump relations; 4.4 Wave-propagation algorithm: an example of finite volume methods; 4.4.1 One-dimensional elasticity; 4.4.2 Averaged quantities; 4.4.3 Numerical fluxes; 4.4.4 Second order corrections; 4.4.5 Conservative wave propagation algorithm; 4.5 Local equilibrium approximation; 4.5.1 Excess quantities and numerical fluxes 4.5.2 Riemann problem4.5.3 Excess quantities at the boundaries between cells; 4.6 Concluding remarks; 5. Wave Propagation in Inhomogeneous Solids; 5.1 Governing equations; 5.2 One-dimensional waves in periodic media; 5.3 One-dimensional weakly nonlinear waves in periodic media; 5.4 One-dimensional linear waves in laminates; 5.5 Nonlinear elastic wave in laminates under impact loading; 5.5.1 Problem formulation; 5.5.2 Comparison with experimental data; 5.5.3 Discussion of results; 5.6 Waves in functionally graded materials; 5.7 Concluding remarks 6. Macroscopic Dynamics of Phase-Transition Fronts6.1 Isothermal impact-induced front propagation; 6.1.1 Uniaxial motion of a slab; 6.1.2 Excess quantities in the bulk; 6.1.3 Excess quantities at the phase boundary; 6.1.4 Initiation criterion for the stress-induced phase transformation; 6.1.5 Velocity of the phase boundary; 6.2 Numerical simulations; 6.2.1 Algorithm description; 6.2.2 Comparison with experimental data; 6.3 Interaction of a plane wave with phase boundary; 6.3.1 Pseudoelastic behavior; 6.4 One-dimensional adiabatic fronts in a bar; 6.4.1 Formulation of the problem 6.4.2 Adiabatic approximation |
Record Nr. | UNINA-9910825711603321 |
Berezovski Arkadi | ||
Hackensack, NJ, : World Scientific, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|