top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Internal variables in thermoelasticity / / by Arkadi Berezovski, Peter Ván
Internal variables in thermoelasticity / / by Arkadi Berezovski, Peter Ván
Autore Berezovski Arkadi
Edizione [1st ed. 2017.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Descrizione fisica 1 online resource (VIII, 220 p. 37 illus.)
Disciplina 531.382
Collana Solid Mechanics and Its Applications
Soggetto topico Mechanics
Mechanics, Applied
Thermodynamics
Heat engineering
Heat transfer
Mass transfer
Continuum physics
Mathematical physics
Mathematical models
Solid Mechanics
Engineering Thermodynamics, Heat and Mass Transfer
Classical and Continuum Physics
Mathematical Applications in the Physical Sciences
Mathematical Modeling and Industrial Mathematics
ISBN 3-319-56934-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part I Internal variables in thermomechanics -- 2 Introduction -- 3 Thermomechanical single internal variable theory -- 4 Dual internal variables -- Part II Dispersive elastic waves in one dimension -- 5 Internal variables and microinertia -- 6 Dispersive elastic waves -- 7 One-dimensional microelasticity -- 8 Influence of nonlinearity -- Part III Thermal effects -- 9 The role of heterogeneity in heat pulse propagation in a solid with inner structure -- 10 Heat conduction in microstructured solids -- 11 One-dimensional thermoelasticity with dual internal variables -- 12 Influence of microstructure on thermoelastic wave propagation -- Part IV Weakly nonlocal thermoelasticity for microstructured solids -- 13 Microdeformation and microtemperature -- Appendix A: Sketch of thermostatics -- Appendix B: Finite-volume numerical algorithm -- Index.
Record Nr. UNINA-9910254313403321
Berezovski Arkadi  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2017
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical simulation of waves and fronts in inhomogeneous solids [[electronic resource] /] / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin
Numerical simulation of waves and fronts in inhomogeneous solids [[electronic resource] /] / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin
Autore Berezovski Arkadi
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (236 p.)
Disciplina 530.4/12
Altri autori (Persone) EngelbrechtJuri
MauginG. A <1944-> (Gerard A.)
Collana World Scientific series on nonlinear science
Soggetto topico Elastic solids
Inhomogeneous materials
Wave-motion, Theory of
Soggetto genere / forma Electronic books.
ISBN 1-281-96830-7
9786611968304
981-283-268-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Waves and fronts; 1.2 True and quasi-inhomogeneities; 1.3 Driving force and the corresponding dissipation; 1.4 Example of a straight brittle crack; 1.5 Example of a phase-transition front; 1.6 Numerical simulations of moving discontinuities; 1.7 Outline of the book; 2. Material Inhomogeneities in Thermomechanics; 2.1 Kinematics; 2.2 Integral balance laws; 2.3 Localization and jump relations; 2.3.1 Local balance laws; 2.3.2 Jump relations; 2.3.3 Constitutive relations; 2.4 True and quasi-material inhomogeneities; 2.4.1 Balance of pseudomomentum
2.5 Brittle fracture2.5.1 Straight brittle crack; 2.6 Phase-transition fronts; 2.6.1 Jump relations; 2.6.2 Driving force; 2.7 On the exploitation of Eshelby's stress in isothermal and adiabatic conditions; 2.7.1 Driving force at singular surface in adiabatic conditions; 2.7.2 Another approach to the driving force; 2.8 Concluding remarks; 3. Local Phase Equilibrium and Jump Relations at Moving Discontinuities; 3.1 Intrinsic stability of simple systems; 3.2 Local phase equilibrium; 3.2.1 Classical equilibrium conditions; 3.2.2 Local equilibrium jump relations; 3.3 Non-equilibrium states
3.4 Local equilibrium jump relations at discontinuity3.5 Excess quantities at a moving discontinuity; 3.6 Velocity of moving discontinuity; 3.7 Concluding remarks; 4. Linear Thermoelasticity; 4.1 Local balance laws; 4.2 Balance of pseudomomentum; 4.3 Jump relations; 4.4 Wave-propagation algorithm: an example of finite volume methods; 4.4.1 One-dimensional elasticity; 4.4.2 Averaged quantities; 4.4.3 Numerical fluxes; 4.4.4 Second order corrections; 4.4.5 Conservative wave propagation algorithm; 4.5 Local equilibrium approximation; 4.5.1 Excess quantities and numerical fluxes
4.5.2 Riemann problem4.5.3 Excess quantities at the boundaries between cells; 4.6 Concluding remarks; 5. Wave Propagation in Inhomogeneous Solids; 5.1 Governing equations; 5.2 One-dimensional waves in periodic media; 5.3 One-dimensional weakly nonlinear waves in periodic media; 5.4 One-dimensional linear waves in laminates; 5.5 Nonlinear elastic wave in laminates under impact loading; 5.5.1 Problem formulation; 5.5.2 Comparison with experimental data; 5.5.3 Discussion of results; 5.6 Waves in functionally graded materials; 5.7 Concluding remarks
6. Macroscopic Dynamics of Phase-Transition Fronts6.1 Isothermal impact-induced front propagation; 6.1.1 Uniaxial motion of a slab; 6.1.2 Excess quantities in the bulk; 6.1.3 Excess quantities at the phase boundary; 6.1.4 Initiation criterion for the stress-induced phase transformation; 6.1.5 Velocity of the phase boundary; 6.2 Numerical simulations; 6.2.1 Algorithm description; 6.2.2 Comparison with experimental data; 6.3 Interaction of a plane wave with phase boundary; 6.3.1 Pseudoelastic behavior; 6.4 One-dimensional adiabatic fronts in a bar; 6.4.1 Formulation of the problem
6.4.2 Adiabatic approximation
Record Nr. UNINA-9910453831303321
Berezovski Arkadi  
Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical simulation of waves and fronts in inhomogeneous solids [[electronic resource] /] / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin
Numerical simulation of waves and fronts in inhomogeneous solids [[electronic resource] /] / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin
Autore Berezovski Arkadi
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (236 p.)
Disciplina 530.4/12
Altri autori (Persone) EngelbrechtJuri
MauginG. A <1944-> (Gerard A.)
Collana World Scientific series on nonlinear science
Soggetto topico Elastic solids
Inhomogeneous materials
Wave-motion, Theory of
ISBN 1-281-96830-7
9786611968304
981-283-268-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Waves and fronts; 1.2 True and quasi-inhomogeneities; 1.3 Driving force and the corresponding dissipation; 1.4 Example of a straight brittle crack; 1.5 Example of a phase-transition front; 1.6 Numerical simulations of moving discontinuities; 1.7 Outline of the book; 2. Material Inhomogeneities in Thermomechanics; 2.1 Kinematics; 2.2 Integral balance laws; 2.3 Localization and jump relations; 2.3.1 Local balance laws; 2.3.2 Jump relations; 2.3.3 Constitutive relations; 2.4 True and quasi-material inhomogeneities; 2.4.1 Balance of pseudomomentum
2.5 Brittle fracture2.5.1 Straight brittle crack; 2.6 Phase-transition fronts; 2.6.1 Jump relations; 2.6.2 Driving force; 2.7 On the exploitation of Eshelby's stress in isothermal and adiabatic conditions; 2.7.1 Driving force at singular surface in adiabatic conditions; 2.7.2 Another approach to the driving force; 2.8 Concluding remarks; 3. Local Phase Equilibrium and Jump Relations at Moving Discontinuities; 3.1 Intrinsic stability of simple systems; 3.2 Local phase equilibrium; 3.2.1 Classical equilibrium conditions; 3.2.2 Local equilibrium jump relations; 3.3 Non-equilibrium states
3.4 Local equilibrium jump relations at discontinuity3.5 Excess quantities at a moving discontinuity; 3.6 Velocity of moving discontinuity; 3.7 Concluding remarks; 4. Linear Thermoelasticity; 4.1 Local balance laws; 4.2 Balance of pseudomomentum; 4.3 Jump relations; 4.4 Wave-propagation algorithm: an example of finite volume methods; 4.4.1 One-dimensional elasticity; 4.4.2 Averaged quantities; 4.4.3 Numerical fluxes; 4.4.4 Second order corrections; 4.4.5 Conservative wave propagation algorithm; 4.5 Local equilibrium approximation; 4.5.1 Excess quantities and numerical fluxes
4.5.2 Riemann problem4.5.3 Excess quantities at the boundaries between cells; 4.6 Concluding remarks; 5. Wave Propagation in Inhomogeneous Solids; 5.1 Governing equations; 5.2 One-dimensional waves in periodic media; 5.3 One-dimensional weakly nonlinear waves in periodic media; 5.4 One-dimensional linear waves in laminates; 5.5 Nonlinear elastic wave in laminates under impact loading; 5.5.1 Problem formulation; 5.5.2 Comparison with experimental data; 5.5.3 Discussion of results; 5.6 Waves in functionally graded materials; 5.7 Concluding remarks
6. Macroscopic Dynamics of Phase-Transition Fronts6.1 Isothermal impact-induced front propagation; 6.1.1 Uniaxial motion of a slab; 6.1.2 Excess quantities in the bulk; 6.1.3 Excess quantities at the phase boundary; 6.1.4 Initiation criterion for the stress-induced phase transformation; 6.1.5 Velocity of the phase boundary; 6.2 Numerical simulations; 6.2.1 Algorithm description; 6.2.2 Comparison with experimental data; 6.3 Interaction of a plane wave with phase boundary; 6.3.1 Pseudoelastic behavior; 6.4 One-dimensional adiabatic fronts in a bar; 6.4.1 Formulation of the problem
6.4.2 Adiabatic approximation
Record Nr. UNINA-9910782226603321
Berezovski Arkadi  
Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Numerical simulation of waves and fronts in inhomogeneous solids / / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin
Numerical simulation of waves and fronts in inhomogeneous solids / / Arkadi Berezovski, Juri Engelbrecht, Gerard A Maugin
Autore Berezovski Arkadi
Edizione [1st ed.]
Pubbl/distr/stampa Hackensack, NJ, : World Scientific, c2008
Descrizione fisica 1 online resource (236 p.)
Disciplina 530.4/12
Altri autori (Persone) EngelbrechtJuri
MauginG. A <1944-> (Gerard A.)
Collana World Scientific series on nonlinear science
Soggetto topico Elastic solids
Inhomogeneous materials
Wave-motion, Theory of
ISBN 1-281-96830-7
9786611968304
981-283-268-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface; Contents; 1. Introduction; 1.1 Waves and fronts; 1.2 True and quasi-inhomogeneities; 1.3 Driving force and the corresponding dissipation; 1.4 Example of a straight brittle crack; 1.5 Example of a phase-transition front; 1.6 Numerical simulations of moving discontinuities; 1.7 Outline of the book; 2. Material Inhomogeneities in Thermomechanics; 2.1 Kinematics; 2.2 Integral balance laws; 2.3 Localization and jump relations; 2.3.1 Local balance laws; 2.3.2 Jump relations; 2.3.3 Constitutive relations; 2.4 True and quasi-material inhomogeneities; 2.4.1 Balance of pseudomomentum
2.5 Brittle fracture2.5.1 Straight brittle crack; 2.6 Phase-transition fronts; 2.6.1 Jump relations; 2.6.2 Driving force; 2.7 On the exploitation of Eshelby's stress in isothermal and adiabatic conditions; 2.7.1 Driving force at singular surface in adiabatic conditions; 2.7.2 Another approach to the driving force; 2.8 Concluding remarks; 3. Local Phase Equilibrium and Jump Relations at Moving Discontinuities; 3.1 Intrinsic stability of simple systems; 3.2 Local phase equilibrium; 3.2.1 Classical equilibrium conditions; 3.2.2 Local equilibrium jump relations; 3.3 Non-equilibrium states
3.4 Local equilibrium jump relations at discontinuity3.5 Excess quantities at a moving discontinuity; 3.6 Velocity of moving discontinuity; 3.7 Concluding remarks; 4. Linear Thermoelasticity; 4.1 Local balance laws; 4.2 Balance of pseudomomentum; 4.3 Jump relations; 4.4 Wave-propagation algorithm: an example of finite volume methods; 4.4.1 One-dimensional elasticity; 4.4.2 Averaged quantities; 4.4.3 Numerical fluxes; 4.4.4 Second order corrections; 4.4.5 Conservative wave propagation algorithm; 4.5 Local equilibrium approximation; 4.5.1 Excess quantities and numerical fluxes
4.5.2 Riemann problem4.5.3 Excess quantities at the boundaries between cells; 4.6 Concluding remarks; 5. Wave Propagation in Inhomogeneous Solids; 5.1 Governing equations; 5.2 One-dimensional waves in periodic media; 5.3 One-dimensional weakly nonlinear waves in periodic media; 5.4 One-dimensional linear waves in laminates; 5.5 Nonlinear elastic wave in laminates under impact loading; 5.5.1 Problem formulation; 5.5.2 Comparison with experimental data; 5.5.3 Discussion of results; 5.6 Waves in functionally graded materials; 5.7 Concluding remarks
6. Macroscopic Dynamics of Phase-Transition Fronts6.1 Isothermal impact-induced front propagation; 6.1.1 Uniaxial motion of a slab; 6.1.2 Excess quantities in the bulk; 6.1.3 Excess quantities at the phase boundary; 6.1.4 Initiation criterion for the stress-induced phase transformation; 6.1.5 Velocity of the phase boundary; 6.2 Numerical simulations; 6.2.1 Algorithm description; 6.2.2 Comparison with experimental data; 6.3 Interaction of a plane wave with phase boundary; 6.3.1 Pseudoelastic behavior; 6.4 One-dimensional adiabatic fronts in a bar; 6.4.1 Formulation of the problem
6.4.2 Adiabatic approximation
Record Nr. UNINA-9910825711603321
Berezovski Arkadi  
Hackensack, NJ, : World Scientific, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui