top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
Autore Benkart Georgia <1949->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2009
Descrizione fisica 1 online resource (164 p.)
Disciplina 512/.482
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie algebras
Soggetto genere / forma Electronic books.
ISBN 1-4704-0526-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case""
""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras""
""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(�)]-primitive vectors in g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of g[sub(1)]""
""4.8. Determining the negative part when g[sub(1)] is irreducible""""4.9. Determining the negative part when g[sub(1)] is reducible""; ""4.10. The case that g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography""
Record Nr. UNINA-9910480247203321
Benkart Georgia <1949->  
Providence, Rhode Island : , : American Mathematical Society, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
Autore Benkart Georgia <1949->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2009
Descrizione fisica 1 online resource (164 p.)
Disciplina 512/.482
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie algebras
ISBN 1-4704-0526-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case""
""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras""
""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(�)]-primitive vectors in g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of g[sub(1)]""
""4.8. Determining the negative part when g[sub(1)] is irreducible""""4.9. Determining the negative part when g[sub(1)] is reducible""; ""4.10. The case that g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography""
Record Nr. UNINA-9910788853903321
Benkart Georgia <1949->  
Providence, Rhode Island : , : American Mathematical Society, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
Autore Benkart Georgia <1949->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 2009
Descrizione fisica 1 online resource (164 p.)
Disciplina 512/.482
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie algebras
ISBN 1-4704-0526-1
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto ""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case""
""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras""
""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(�)]-primitive vectors in g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of g[sub(1)]""
""4.8. Determining the negative part when g[sub(1)] is irreducible""""4.9. Determining the negative part when g[sub(1)] is reducible""; ""4.10. The case that g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography""
Record Nr. UNINA-9910827764803321
Benkart Georgia <1949->  
Providence, Rhode Island : , : American Mathematical Society, , 2009
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
Autore Benkart Georgia <1949->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1990
Descrizione fisica 1 online resource (177 p.)
Disciplina 512/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie algebras
Representations of algebras
Modules (Algebra)
Partitions (Mathematics)
Semisimple Lie groups
Soggetto genere / forma Electronic books.
ISBN 1-4704-0853-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910480190303321
Benkart Georgia <1949->  
Providence, Rhode Island : , : American Mathematical Society, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
Autore Benkart Georgia <1949->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1990
Descrizione fisica 1 online resource (177 p.)
Disciplina 512/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie algebras
Representations of algebras
Modules (Algebra)
Partitions (Mathematics)
Semisimple Lie groups
ISBN 1-4704-0853-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910788873803321
Benkart Georgia <1949->  
Providence, Rhode Island : , : American Mathematical Society, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
Autore Benkart Georgia <1949->
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society, , 1990
Descrizione fisica 1 online resource (177 p.)
Disciplina 512/.55
Collana Memoirs of the American Mathematical Society
Soggetto topico Lie algebras
Representations of algebras
Modules (Algebra)
Partitions (Mathematics)
Semisimple Lie groups
ISBN 1-4704-0853-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910812429603321
Benkart Georgia <1949->  
Providence, Rhode Island : , : American Mathematical Society, , 1990
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui