The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
| The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet |
| Autore | Benkart Georgia <1949-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (164 p.) |
| Disciplina | 512/.482 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Lie algebras |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0526-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case""
""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras"" ""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(�)]-primitive vectors in g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of g[sub(1)]"" ""4.8. Determining the negative part when g[sub(1)] is irreducible""""4.9. Determining the negative part when g[sub(1)] is reducible""; ""4.10. The case that g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography"" |
| Record Nr. | UNINA-9910480247203321 |
Benkart Georgia <1949->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
| The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet |
| Autore | Benkart Georgia <1949-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (164 p.) |
| Disciplina | 512/.482 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Lie algebras |
| ISBN | 1-4704-0526-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case""
""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras"" ""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(�)]-primitive vectors in g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of g[sub(1)]"" ""4.8. Determining the negative part when g[sub(1)] is irreducible""""4.9. Determining the negative part when g[sub(1)] is reducible""; ""4.10. The case that g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography"" |
| Record Nr. | UNINA-9910788853903321 |
Benkart Georgia <1949->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet
| The recognition theorem for graded Lie algebras in prime characteristic / / Georgia Benkart, Thomas Gregory, Alexander Premet |
| Autore | Benkart Georgia <1949-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (164 p.) |
| Disciplina | 512/.482 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico | Lie algebras |
| ISBN | 1-4704-0526-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""Chapter 1. Graded Lie Algebras""; ""1.1. Introduction""; ""1.2. The Weisfeiler radical""; ""1.3. The minimal ideal J""; ""1.4. The graded algebras B(V[sub(-t)]) and B(V[sub(t)])""; ""1.5. The local subalgebra""; ""1.6. General properties of graded Lie algebras""; ""1.7. Restricted Lie algebras""; ""1.8. The main theorem on restrictedness (Theorem 1.63)""; ""1.9. Remarks on restrictedness""; ""1.10. The action of g[sub(0)] on g[sub(-j)]""; ""1.11. The depth-one case of Theorem 1.63""; ""1.12. Proof of Theorem 1.63 in the depth-one case""
""2.7. Divided power algebras""""2.8. Witt Lie algebras of Cartan type (the W series)""; ""2.9. Special Lie algebras of Cartan type (the S series)""; ""2.10. Hamiltonian Lie algebras of Cartan type (the H series)""; ""2.11. Contact Lie algebras of Cartan type (the K series)""; ""2.12. The Recognition Theorem with stronger hypotheses""; ""2.13. g[sub(l)] as a g[sub(0)]-module for Lie algebras g of Cartan type""; ""2.14. Melikyan Lie algebras""; ""Chapter 3. The Contragredient Case""; ""3.1. Introduction""; ""3.2. Results on modules for three-dimensional Lie algebras"" ""3.3. Primitive vectors in g[sub(1)] and g[sub(-1)]""""3.4. Subalgebras with a balanced grading""; ""3.5. Algebras with an unbalanced grading""; ""Chapter 4. The Noncontragredient Case""; ""4.1. General assumptions and notation""; ""4.2. Brackets of weight vectors in opposite gradation spaces""; ""4.3. Determining g[sub(0)] and its representation on g[sub(-1)]""; ""4.4. Additional assumptions""; ""4.5. Computing weights of b[sup(�)]-primitive vectors in g[sub(1)]""; ""4.6. Determination of the local Lie algebra""; ""4.7. The irreducibility of g[sub(1)]"" ""4.8. Determining the negative part when g[sub(1)] is irreducible""""4.9. Determining the negative part when g[sub(1)] is reducible""; ""4.10. The case that g[sub(0)] is abelian""; ""4.11. Completion of the proof of the Main Theorem""; ""Bibliography"" |
| Record Nr. | UNINA-9910827764803321 |
Benkart Georgia <1949->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
| Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire |
| Autore | Benkart Georgia <1949-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
| Descrizione fisica | 1 online resource (177 p.) |
| Disciplina | 512/.55 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Lie algebras
Representations of algebras Modules (Algebra) Partitions (Mathematics) Semisimple Lie groups |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0853-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910480190303321 |
Benkart Georgia <1949->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
| Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire |
| Autore | Benkart Georgia <1949-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
| Descrizione fisica | 1 online resource (177 p.) |
| Disciplina | 512/.55 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Lie algebras
Representations of algebras Modules (Algebra) Partitions (Mathematics) Semisimple Lie groups |
| ISBN | 1-4704-0853-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910788873803321 |
Benkart Georgia <1949->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire
| Stability in modules for classical lie algebras : a constructive approach / / G. M. Benkart, D. J. Britten, and F. W. Lemire |
| Autore | Benkart Georgia <1949-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 1990 |
| Descrizione fisica | 1 online resource (177 p.) |
| Disciplina | 512/.55 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Lie algebras
Representations of algebras Modules (Algebra) Partitions (Mathematics) Semisimple Lie groups |
| ISBN | 1-4704-0853-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910812429603321 |
Benkart Georgia <1949->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 1990 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||