Branched standard spines of 3-manifolds / / R. Benedetti, Carlo Petronio
| Branched standard spines of 3-manifolds / / R. Benedetti, Carlo Petronio |
| Autore | Benedetti R. |
| Edizione | [1st ed. 1997.] |
| Pubbl/distr/stampa | Berlin : , : Springer, , [1997] |
| Descrizione fisica | 1 online resource (VIII, 140 p.) |
| Disciplina | 514.3 |
| Collana | Lecture notes in mathematics (Springer-Verlag) |
| Soggetto topico | Three-manifolds (Topology) |
| ISBN | 3-540-68345-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Motivations, plan and statements -- A review on standard spines and o-graphs -- Branched standard spines -- Manifolds with boundary -- Combed closed manifolds -- More on combings, and the closed calculus -- Framed and spin manifolds -- Branched spines and quantum invariants -- Problems and perspectives -- Homology and cohomology computations. |
| Altri titoli varianti | Branched standard spines of three-manifolds |
| Record Nr. | UNISA-996466606803316 |
Benedetti R.
|
||
| Berlin : , : Springer, , [1997] | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Branched Standard Spines of 3-manifolds / / by Riccardo Benedetti, Carlo Petronio
| Branched Standard Spines of 3-manifolds / / by Riccardo Benedetti, Carlo Petronio |
| Autore | Benedetti R. |
| Edizione | [1st ed. 1997.] |
| Pubbl/distr/stampa | Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997 |
| Descrizione fisica | 1 online resource (VIII, 140 p.) |
| Disciplina | 514.3 |
| Collana | Lecture Notes in Mathematics |
| Soggetto topico |
Manifolds (Mathematics)
Manifolds and Cell Complexes |
| ISBN | 3-540-68345-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Motivations, plan and statements -- A review on standard spines and o-graphs -- Branched standard spines -- Manifolds with boundary -- Combed closed manifolds -- More on combings, and the closed calculus -- Framed and spin manifolds -- Branched spines and quantum invariants -- Problems and perspectives -- Homology and cohomology computations. |
| Record Nr. | UNINA-9910146285203321 |
Benedetti R.
|
||
| Berlin, Heidelberg : , : Springer Berlin Heidelberg : , : Imprint : Springer, , 1997 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante
| Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante |
| Autore | Benedetti R. |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (181 p.) |
| Disciplina | 514.3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Three-manifolds (Topology)
Global differential geometry Low-dimensional topology |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-0532-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""2.1. Generalities on (X,G)-structures""""2.2. Minkowski space""; ""2.3. De Sitter space""; ""2.4. Anti de Sitter space""; ""2.5. Complex projective structures on surfaces""; ""Chapter 3. Flat globally hyperbolic spacetimes""; ""3.1. Globally hyperbolic spacetimes""; ""3.2. Cosmological time""; ""3.3. Regular domains""; ""3.4. Measured geodesic laminations on straight convex sets""; ""3.5. From measured geodesic laminations towards regular domains""; ""3.6. From regular domains towards measured geodesic laminations""; ""3.7. Initial singularities and R-trees""
""3.8. Equivariant constructions""""Chapter 4. Flat Lorentzian vs hyperbolic geometry""; ""4.1. Hyperbolic bending cocycles""; ""4.2. The Wick rotation""; ""4.3. On the geometry of M[sub(λ)]""; ""4.4. Equivariant theory""; ""Chapter 5. Flat vs de Sitter Lorentzian geometry""; ""5.1. Standard de Sitter spacetimes""; ""5.2. The rescaling""; ""5.3. Equivariant theory""; ""Chapter 6. Flat vs AdS Lorentzian geometry""; ""6.1. Bending in AdS space""; ""6.2. Canonical AdS rescaling""; ""6.3. Maximal globally hyperbolic AdS spacetimes""; ""6.4. Classification via AdS rescaling"" ""6.5. Equivariant rescaling""""6.6. AdS rescaling and generalized earthquakes""; ""6.7. T-symmetry""; ""6.8. Examples""; ""Chapter 7. QD-spacetimes""; ""7.1. Quadratic differentials""; ""7.2. Flat QD-spacetimes""; ""7.3. QD Wick rotation-rescaling theory""; ""Chapter 8. Complements""; ""8.1. Moving along a ray of laminations""; ""8.2. More compact Cauchy surfaces""; ""8.3. Including particles""; ""8.4. Open questions""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" |
| Record Nr. | UNINA-9910480615903321 |
Benedetti R.
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante
| Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante |
| Autore | Benedetti R. |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (181 p.) |
| Disciplina | 514.3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Three-manifolds (Topology)
Global differential geometry Low-dimensional topology |
| ISBN | 1-4704-0532-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""2.1. Generalities on (X,G)-structures""""2.2. Minkowski space""; ""2.3. De Sitter space""; ""2.4. Anti de Sitter space""; ""2.5. Complex projective structures on surfaces""; ""Chapter 3. Flat globally hyperbolic spacetimes""; ""3.1. Globally hyperbolic spacetimes""; ""3.2. Cosmological time""; ""3.3. Regular domains""; ""3.4. Measured geodesic laminations on straight convex sets""; ""3.5. From measured geodesic laminations towards regular domains""; ""3.6. From regular domains towards measured geodesic laminations""; ""3.7. Initial singularities and R-trees""
""3.8. Equivariant constructions""""Chapter 4. Flat Lorentzian vs hyperbolic geometry""; ""4.1. Hyperbolic bending cocycles""; ""4.2. The Wick rotation""; ""4.3. On the geometry of M[sub(λ)]""; ""4.4. Equivariant theory""; ""Chapter 5. Flat vs de Sitter Lorentzian geometry""; ""5.1. Standard de Sitter spacetimes""; ""5.2. The rescaling""; ""5.3. Equivariant theory""; ""Chapter 6. Flat vs AdS Lorentzian geometry""; ""6.1. Bending in AdS space""; ""6.2. Canonical AdS rescaling""; ""6.3. Maximal globally hyperbolic AdS spacetimes""; ""6.4. Classification via AdS rescaling"" ""6.5. Equivariant rescaling""""6.6. AdS rescaling and generalized earthquakes""; ""6.7. T-symmetry""; ""6.8. Examples""; ""Chapter 7. QD-spacetimes""; ""7.1. Quadratic differentials""; ""7.2. Flat QD-spacetimes""; ""7.3. QD Wick rotation-rescaling theory""; ""Chapter 8. Complements""; ""8.1. Moving along a ray of laminations""; ""8.2. More compact Cauchy surfaces""; ""8.3. Including particles""; ""8.4. Open questions""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" |
| Record Nr. | UNINA-9910788854103321 |
Benedetti R.
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante
| Canonical Wick rotations in 3-dimensional gravity / / Riccardo Benedetti, Francesco Bonsante |
| Autore | Benedetti R. |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2009 |
| Descrizione fisica | 1 online resource (181 p.) |
| Disciplina | 514.3 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Three-manifolds (Topology)
Global differential geometry Low-dimensional topology |
| ISBN | 1-4704-0532-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""2.1. Generalities on (X,G)-structures""""2.2. Minkowski space""; ""2.3. De Sitter space""; ""2.4. Anti de Sitter space""; ""2.5. Complex projective structures on surfaces""; ""Chapter 3. Flat globally hyperbolic spacetimes""; ""3.1. Globally hyperbolic spacetimes""; ""3.2. Cosmological time""; ""3.3. Regular domains""; ""3.4. Measured geodesic laminations on straight convex sets""; ""3.5. From measured geodesic laminations towards regular domains""; ""3.6. From regular domains towards measured geodesic laminations""; ""3.7. Initial singularities and R-trees""
""3.8. Equivariant constructions""""Chapter 4. Flat Lorentzian vs hyperbolic geometry""; ""4.1. Hyperbolic bending cocycles""; ""4.2. The Wick rotation""; ""4.3. On the geometry of M[sub(λ)]""; ""4.4. Equivariant theory""; ""Chapter 5. Flat vs de Sitter Lorentzian geometry""; ""5.1. Standard de Sitter spacetimes""; ""5.2. The rescaling""; ""5.3. Equivariant theory""; ""Chapter 6. Flat vs AdS Lorentzian geometry""; ""6.1. Bending in AdS space""; ""6.2. Canonical AdS rescaling""; ""6.3. Maximal globally hyperbolic AdS spacetimes""; ""6.4. Classification via AdS rescaling"" ""6.5. Equivariant rescaling""""6.6. AdS rescaling and generalized earthquakes""; ""6.7. T-symmetry""; ""6.8. Examples""; ""Chapter 7. QD-spacetimes""; ""7.1. Quadratic differentials""; ""7.2. Flat QD-spacetimes""; ""7.3. QD Wick rotation-rescaling theory""; ""Chapter 8. Complements""; ""8.1. Moving along a ray of laminations""; ""8.2. More compact Cauchy surfaces""; ""8.3. Including particles""; ""8.4. Open questions""; ""Bibliography""; ""Index""; ""A""; ""B""; ""C""; ""D""; ""E""; ""F""; ""G""; ""H""; ""I""; ""K""; ""L""; ""M""; ""P""; ""Q""; ""R""; ""S""; ""T""; ""U""; ""V""; ""W"" |
| Record Nr. | UNINA-9910829176403321 |
Benedetti R.
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2009 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||