top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Multi-level Bayesian models for environment perception / / Csaba Benedek
Multi-level Bayesian models for environment perception / / Csaba Benedek
Autore Benedek Csaba
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (208 pages)
Disciplina 006.4
Soggetto topico Markov processes
Bayesian statistical decision theory
Reconeixement de formes (Informàtica)
Visió per ordinador
Models matemàtics
Processos de Markov
Estadística bayesiana
Soggetto genere / forma Llibres electrònics
ISBN 9783030836542
9783030836535
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Acknowledgements -- Contents -- Acronyms and Notations -- Abbreviations and Concepts -- General Notations Used in the Book -- Specific Notations Used in MRF/CXM Models -- Specific Notations Used in MPP Models -- 1 Introduction -- 2 Fundamentals -- 2.1 Measurement Representation and Problem Formulations -- 2.2 Markovian Classification Models -- 2.2.1 Markov Random Fields, Gibbs Potentials, and Observation Processes -- 2.2.2 Bayesian Labeling Approach and the Potts Model -- 2.2.3 MRF-Based Image Segmentation -- 2.2.4 MRF Optimization -- 2.2.5 Mixed Markov Models -- 2.3 Object Population Extraction with Marked Point Processes -- 2.3.1 Definition of Marked Point Processes -- 2.3.2 MPP Energy Functions -- 2.3.3 MPP Optimization -- 2.4 Methodological Contributions of the Book -- 3 Bayesian Models for Dynamic Scene Analysis -- 3.1 Dynamic Scene Perception -- 3.2 Foreground Extraction in Video Sequences -- 3.2.1 Related Work in Video-Based Foreground Detection -- 3.2.2 MRF Model for Foreground Extraction -- 3.2.3 Probabilistic Model of the Background and Shadow Processes -- 3.2.4 Microstructural Features -- 3.2.5 Foreground Probabilities -- 3.2.6 Parameter Settings -- 3.2.7 MRF Optimization -- 3.2.8 Results -- 3.2.9 Summary and Applications of Foreground Segmentation -- 3.3 People Localization in Multi-camera Systems -- 3.3.1 A New Approach on Multi-view People Localization -- 3.3.2 Silhouette-Based Feature Extraction -- 3.3.3 3D Marked Point Process Model -- 3.3.4 Evaluation of Multi-camera People Localization -- 3.3.5 Applications and Alternative Ways of 3D Person Localization -- 3.4 Foreground Extraction in Lidar Point Cloud Sequences -- 3.4.1 Problem Formulation and Data Mapping -- 3.4.2 Background Model -- 3.4.3 DMRF Approach on Foreground Segmentation -- 3.4.4 Evaluation of DMRF-Based Foreground-Background Separation.
3.4.5 Application of the DMFR Method for Person and Activity Recognition -- 3.5 Conclusions -- 4 Multi-layer Label Fusion Models -- 4.1 Markovian Fusion Models in Computer Vision -- 4.2 A Label Fusion Model for Object Motion Detection -- 4.2.1 2D Image Registration -- 4.2.2 Change Detection with 3D Approach -- 4.2.3 Feature Selection -- 4.2.4 Multi-layer Segmentation Model -- 4.2.5 L3Mrf Optimization -- 4.2.6 Experiments on Object Motion Detection -- 4.3 Long-Term Change Detection in Aerial Photos -- 4.3.1 Image Model and Feature Extraction -- 4.3.2 A Conditional Mixed Markov Image Segmentation Model -- 4.3.3 Experiments on Long-Term Change Detection -- 4.4 Parameter Settings in Multi-layer Segmentation Models -- 4.5 Conclusions -- 5 Multitemporal Data Analysis with Marked Point Processes -- 5.1 Introducing the Time Dimension in MPP Models -- 5.2 Object-Level Change Detection -- 5.2.1 Building Development Monitoring-Problem Definition -- 5.2.2 Feature Selection -- 5.2.3 Multitemporal MPP Configuration Model and Optimization -- 5.2.4 Experimental Study of the mMPP Model -- 5.3 A Point Process Model for Target Sequence Analysis -- 5.3.1 Application on Moving Target Analysis in ISAR Image Sequences -- 5.3.2 Problem Definition and Notations -- 5.3.3 Data Preprocessing in a Bottom-Up Approach -- 5.3.4 Multiframe Marked Point Process Model -- 5.3.5 Multiframe MPP Optimization -- 5.3.6 Experimental Results on Target Sequence Analysis -- 5.4 Parameter Settings in Dynamic MPP Models -- 5.5 Conclusions -- 6 Multi-level Object Population Analysis with an Embedded MPP Model -- 6.1 A Hierarchical MPP Approach -- 6.2 Problem Formulation and Notations -- 6.3 EMPP Energy Model -- 6.4 Multi-level MPP Optimization -- 6.5 Applications of the EMPP Model -- 6.5.1 Built-in Area Analysis in Aerial and Satellite Images -- 6.5.2 Traffic Monitoring-Based on Lidar Data.
6.5.3 Automatic Optical Inspection of Printed Circuit Boards -- 6.6 Implementation Details -- 6.7 Quantitative Evaluation Framework -- 6.7.1 EMPP Benchmark Database -- 6.7.2 Quantitative Evaluation Methodology -- 6.8 Experimental Results -- 6.8.1 EMPP Versus an Ensemble of Single Layer MPPs -- 6.8.2 Application Level Comparison to Non-MPP-Based Techniques -- 6.8.3 Effects on Data Term Parameter Settings -- 6.8.4 Computational Time -- 6.8.5 Experiment Repeatability -- 6.9 Conclusion -- 7 Concluding Remarks -- Appendix References -- -- Index.
Record Nr. UNISA-996472038103316
Benedek Csaba  
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Multi-Level Bayesian Models for Environment Perception / / by Csaba Benedek
Multi-Level Bayesian Models for Environment Perception / / by Csaba Benedek
Autore Benedek Csaba
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (208 pages)
Disciplina 006.4
006.37
Soggetto topico Statistics
Computer vision
Stochastic processes
Markov processes
Geographic information systems
Bayesian Inference
Computer Vision
Stochastic Processes
Markov Process
Statistical Theory and Methods
Geographical Information System
ISBN 9783030836542
9783030836535
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Fundamentals. - Bayesian models for Dynamic Scene Analysis -- Multi-layer label fusion models -- Multitemporal data analysis with Marked Point Processes. - Multi-level object population analysis with an EMPP model -- Concluding Remarks -- References -- Index.
Record Nr. UNINA-9910564689303321
Benedek Csaba  
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui