Advanced design techniques and realizations of microwave and RF filters / / Pierre Jarry, Jacques Beneat |
Autore | Jarry Pierre <1946-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : J. Wiley & Sons, , c2008 |
Descrizione fisica | 1 online resource (376 p.) |
Disciplina |
621.381
621.3813224 |
Altri autori (Persone) | BeneatJacques <1964-> |
Soggetto topico |
Microwave filters
Electric filters |
ISBN |
0-470-65264-0
1-281-73271-0 9786611732714 0-470-29417-5 1-61583-611-X 0-470-29416-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Foreword -- Preface -- Part I: Microwave Filter Fundamentals -- 1. Scattering Parameters and ABCD Matrices -- 2. Approximations and Synthesis -- 3. Waveguides and Transmission Lines -- 4. Categorization of Microwave Filters -- Part II: Minimum-Phase Filters -- 5. Capacitive-Gap Filters for Millimeter Waves -- 6. Evanescent-Mode Waveguide Filters with Dielectric Inserts -- 7. Interdigital Filters -- 8. Combline Filters Implemented In SSS -- Part III: Non-Minimum-Phase Symmetrical Response Filters -- 9. Generalized Interdigital Filters with Conditions on Amplitude and Phase -- 10. Temperature-Stable Narrowband Monomode TE011 Linear-Phase Filters -- Part IV: Non-Minimum-Phase Asymmetrical Response Filters -- 11. Asymmetrical Capacitive-Gap Coupled Line Filters -- 12. Asymmetrical Dual-Mode TE102 / TE301 Thick Iris Rectangular In-Line Waveguide Filters with Transmission Zeros -- 13. Asymmetrical Cylindrical Dual-Mode Waveguide Filters with Transmission Zeros -- 14. Asymmetrical Multimode Rectangular Building Block Filters Using Genetic Optimization -- Appendix 1: Lossless Systems -- Appendix 2: Redundant Elements -- Appendix 3: Modal Analysis of Waveguide Step Discontinuities -- Appendix 4: Trisections with Unity Inverters on the Inside or on the Outside -- Appendix 5: Reference Fields and Scattering Matrices for Multimodal Rectangular Waveguide Filters -- Index. |
Record Nr. | UNINA-9910144138403321 |
Jarry Pierre <1946-> | ||
Hoboken, New Jersey : , : J. Wiley & Sons, , c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced design techniques and realizations of microwave and RF filters / / Pierre Jarry, Jacques Beneat |
Autore | Jarry Pierre <1946-> |
Pubbl/distr/stampa | Hoboken, New Jersey : , : J. Wiley & Sons, , c2008 |
Descrizione fisica | 1 online resource (376 p.) |
Disciplina |
621.381
621.3813224 |
Altri autori (Persone) | BeneatJacques <1964-> |
Soggetto topico |
Microwave filters
Electric filters |
ISBN |
0-470-65264-0
1-281-73271-0 9786611732714 0-470-29417-5 1-61583-611-X 0-470-29416-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Foreword -- Preface -- Part I: Microwave Filter Fundamentals -- 1. Scattering Parameters and ABCD Matrices -- 2. Approximations and Synthesis -- 3. Waveguides and Transmission Lines -- 4. Categorization of Microwave Filters -- Part II: Minimum-Phase Filters -- 5. Capacitive-Gap Filters for Millimeter Waves -- 6. Evanescent-Mode Waveguide Filters with Dielectric Inserts -- 7. Interdigital Filters -- 8. Combline Filters Implemented In SSS -- Part III: Non-Minimum-Phase Symmetrical Response Filters -- 9. Generalized Interdigital Filters with Conditions on Amplitude and Phase -- 10. Temperature-Stable Narrowband Monomode TE011 Linear-Phase Filters -- Part IV: Non-Minimum-Phase Asymmetrical Response Filters -- 11. Asymmetrical Capacitive-Gap Coupled Line Filters -- 12. Asymmetrical Dual-Mode TE102 / TE301 Thick Iris Rectangular In-Line Waveguide Filters with Transmission Zeros -- 13. Asymmetrical Cylindrical Dual-Mode Waveguide Filters with Transmission Zeros -- 14. Asymmetrical Multimode Rectangular Building Block Filters Using Genetic Optimization -- Appendix 1: Lossless Systems -- Appendix 2: Redundant Elements -- Appendix 3: Modal Analysis of Waveguide Step Discontinuities -- Appendix 4: Trisections with Unity Inverters on the Inside or on the Outside -- Appendix 5: Reference Fields and Scattering Matrices for Multimodal Rectangular Waveguide Filters -- Index. |
Record Nr. | UNINA-9910831042603321 |
Jarry Pierre <1946-> | ||
Hoboken, New Jersey : , : J. Wiley & Sons, , c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advanced design techniques and realizations of microwave and RF filters / / Pierre Jarry, Jacques Beneat |
Autore | Jarry Pierre <1946-> |
Pubbl/distr/stampa | Hoboken, N.J., : J. Wiley & Sons, : IEEE Press, c2008 |
Descrizione fisica | 1 online resource (376 p.) |
Disciplina | 621.381/3224 |
Altri autori (Persone) | BeneatJacques <1964-> |
Soggetto topico |
Microwave filters
Electric filters |
ISBN |
0-470-65264-0
1-281-73271-0 9786611732714 0-470-29417-5 1-61583-611-X 0-470-29416-7 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Foreword -- Preface -- Part I: Microwave Filter Fundamentals -- 1. Scattering Parameters and ABCD Matrices -- 2. Approximations and Synthesis -- 3. Waveguides and Transmission Lines -- 4. Categorization of Microwave Filters -- Part II: Minimum-Phase Filters -- 5. Capacitive-Gap Filters for Millimeter Waves -- 6. Evanescent-Mode Waveguide Filters with Dielectric Inserts -- 7. Interdigital Filters -- 8. Combline Filters Implemented In SSS -- Part III: Non-Minimum-Phase Symmetrical Response Filters -- 9. Generalized Interdigital Filters with Conditions on Amplitude and Phase -- 10. Temperature-Stable Narrowband Monomode TE011 Linear-Phase Filters -- Part IV: Non-Minimum-Phase Asymmetrical Response Filters -- 11. Asymmetrical Capacitive-Gap Coupled Line Filters -- 12. Asymmetrical Dual-Mode TE102 / TE301 Thick Iris Rectangular In-Line Waveguide Filters with Transmission Zeros -- 13. Asymmetrical Cylindrical Dual-Mode Waveguide Filters with Transmission Zeros -- 14. Asymmetrical Multimode Rectangular Building Block Filters Using Genetic Optimization -- Appendix 1: Lossless Systems -- Appendix 2: Redundant Elements -- Appendix 3: Modal Analysis of Waveguide Step Discontinuities -- Appendix 4: Trisections with Unity Inverters on the Inside or on the Outside -- Appendix 5: Reference Fields and Scattering Matrices for Multimodal Rectangular Waveguide Filters -- Index. |
Record Nr. | UNINA-9910878072303321 |
Jarry Pierre <1946-> | ||
Hoboken, N.J., : J. Wiley & Sons, : IEEE Press, c2008 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microwave amplifier and active circuit design using the real frequency technique / / Pierre Jarry and Jacques N. Beneat |
Autore | Jarry Pierre <1946-> |
Pubbl/distr/stampa | Hoboken : , : John Wiley & Sons, Inc., , 2016 |
Descrizione fisica | 1 online resource (374 p.) |
Disciplina | 621.381/325 |
Altri autori (Persone) | BeneatJacques <1964-> |
Soggetto topico |
Microwave amplifiers - Design and construction
Electric filters, Active - Design and construction |
ISBN |
1-119-07326-X
1-119-07310-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
-- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg / Marquardt / More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- 2.10 Realizations 59.
2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2 / 8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925 / 6.425 GHz Hybrid Amplifier 96 -- References 99 -- 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- 6.2 Multistage Power Amplifier Representation 152. 6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg / Marquardt / More Optimization Algorithm 239 -- Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253. Index 271. |
Record Nr. | UNINA-9910136778803321 |
Jarry Pierre <1946-> | ||
Hoboken : , : John Wiley & Sons, Inc., , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Microwave amplifier and active circuit design using the real frequency technique / / Pierre Jarry and Jacques N. Beneat |
Autore | Jarry Pierre <1946-> |
Pubbl/distr/stampa | Hoboken : , : John Wiley & Sons, Inc., , 2016 |
Descrizione fisica | 1 online resource (374 p.) |
Disciplina | 621.381/325 |
Altri autori (Persone) | BeneatJacques <1964-> |
Soggetto topico |
Microwave amplifiers - Design and construction
Electric filters, Active - Design and construction |
ISBN |
1-119-07326-X
1-119-07310-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
-- Foreword vii -- Preface ix -- Acknowledgments xiii -- 1 Microwave Amplifier Fundamentals 1 -- 1.1 Introduction 2 -- 1.2 Scattering Parameters and Signal Flow Graphs 2 -- 1.3 Reflection Coefficients 5 -- 1.4 Gain Expressions 7 -- 1.5 Stability 9 -- 1.6 Noise 10 -- 1.7 ABCD Matrix 14 -- 1.7.1 ABCD Matrix of a Series Impedance 14 -- 1.7.2 ABCD Matrix of a Parallel Admittance 15 -- 1.7.3 Input Impedance of Impedance Loaded Two-Port 15 -- 1.7.4 Input Admittance of Admittance Loaded Two-Port 16 -- 1.7.5 ABCD Matrix of the Cascade of Two Systems 16 -- 1.7.6 ABCD Matrix of the Parallel Connection of Two Systems 17 -- 1.7.7 ABCD Matrix of the Series Connection of Two Systems 17 -- 1.7.8 ABCD Matrix of Admittance Loaded Two-Port Connected in Parallel 17 -- 1.7.9 ABCD Matrix of Impedance Loaded Two-Port Connected in Series 19 -- 1.7.10 Conversion Between Scattering and ABCD Matrices 19 -- 1.8 Distributed Network Elements 20 -- 1.8.1 Uniform Transmission Line 20 -- 1.8.2 Unit Element 21 -- 1.8.3 Input Impedance and Input Admittance 22 -- 1.8.4 Short-Circuited Stub Placed in Series 23 -- 1.8.5 Short-Circuited Stub Placed in Parallel 24 -- 1.8.6 Open-Circuited Stub Placed in Series 24 -- 1.8.7 Open-Circuited Stub Placed in Parallel 25 -- 1.8.8 Richard's Transformation 25 -- 1.8.9 Kuroda Identities 28 -- References 35 -- 2 Introduction to the Real Frequency Technique: Multistage Lumped Amplifier Design 37 -- 2.1 Introduction 37 -- 2.2 Multistage Lumped Amplifier Representation 38 -- 2.3 Overview of the RFT 40 -- 2.4 Multistage Transducer Gain 41 -- 2.5 Multistage VSWR 43 -- 2.6 Optimization Process 44 -- 2.6.1 Single-Valued Error and Target Functions 44 -- 2.6.2 Levenberg / Marquardt / More Optimization 46 -- 2.7 Design Procedures 48 -- 2.8 Four-Stage Amplifier Design Example 49 -- 2.9 Transistor Feedback Block for Broadband Amplifiers 57 -- 2.9.1 Resistive Adaptation 57 -- 2.9.2 Resistive Feedback 57 -- 2.9.3 Reactive Feedback 57 -- 2.9.4 Transistor Feedback Block 58 -- 2.10 Realizations 59.
2.10.1 Three-Stage Hybrid Amplifier 59 -- 2.10.2 Two-Stage Monolithic Amplifier 62 -- 2.10.3 Single-Stage GaAs Technology Amplifier 64 -- References 64 -- 3 Multistage Distributed Amplifier Design 67 -- 3.1 Introduction 67 -- 3.2 Multistage Distributed Amplifier Representation 68 -- 3.3 Multistage Transducer Gain 70 -- 3.4 Multistage VSWR 71 -- 3.5 Multistage Noise Figure 73 -- 3.6 Optimization Process 74 -- 3.7 Transistor Bias Circuit Considerations 75 -- 3.8 Distributed Equalizer Synthesis 78 -- 3.8.1 Richard's Theorem 78 -- 3.8.2 Stub Extraction 80 -- 3.8.3 Denormalization 82 -- 3.8.4 UE Impedances Too Low 83 -- 3.8.5 UE Impedances Too High 85 -- 3.9 Design Procedures 88 -- 3.10 Simulations and Realizations 92 -- 3.10.1 Three-Stage 2 / 8 GHz Distributed Amplifier 92 -- 3.10.2 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier 94 -- 3.10.3 Three-Stage 1.15 / 1.5 GHz Distributed Amplifier (Noncommensurate) 94 -- 3.10.4 Three-Stage 5.925 / 6.425 GHz Hybrid Amplifier 96 -- References 99 -- 4 Multistage Transimpedance Amplifiers 101 -- 4.1 Introduction 101 -- 4.2 Multistage Transimpedance Amplifier Representation 102 -- 4.3 Extension to Distributed Equalizers 104 -- 4.4 Multistage Transimpedance Gain 106 -- 4.5 Multistage VSWR 109 -- 4.6 Optimization Process 110 -- 4.7 Design Procedures 111 -- 4.8 Noise Model of the Receiver Front End 114 -- 4.9 Two-Stage Transimpedance Amplifier Example 116 -- References 118 -- 5 Multistage Lossy Distributed Amplifiers 121 -- 5.1 Introduction 121 -- 5.2 Lossy Distributed Network 122 -- 5.3 Multistage Lossy Distributed Amplifier Representation 127 -- 5.4 Multistage Transducer Gain 130 -- 5.5 Multistage VSWR 132 -- 5.6 Optimization Process 133 -- 5.7 Synthesis of the Lossy Distributed Network 135 -- 5.8 Design Procedures 141 -- 5.9 Realizations 144 -- 5.9.1 Single-Stage Broadband Hybrid Realization 144 -- 5.9.2 Two-Stage Broadband Hybrid Realization 145 -- References 149 -- 6 Multistage Power Amplifiers 151 -- 6.1 Introduction 151 -- 6.2 Multistage Power Amplifier Representation 152. 6.3 Added Power Optimization 154 -- 6.3.1 Requirements for Maximum Added Power 154 -- 6.3.2 Two-Dimensional Interpolation 156 -- 6.4 Multistage Transducer Gain 159 -- 6.5 Multistage VSWR 162 -- 6.6 Optimization Process 163 -- 6.7 Design Procedures 164 -- 6.8 Realizations 166 -- 6.8.1 Realization of a One-Stage Power Amplifier 166 -- 6.8.2 Realization of a Three-Stages Power Amplifier 167 -- 6.9 Linear Power Amplifiers 172 -- 6.9.1 Theory 172 -- 6.9.2 Arborescent Structures 175 -- 6.9.3 Example of an Arborescent Linear Power Amplifier 176 -- References 179 -- 7 Multistage Active Microwave Filters 181 -- 7.1 Introduction 181 -- 7.2 Multistage Active Filter Representation 182 -- 7.3 Multistage Transducer Gain 184 -- 7.4 Multistage VSWR 186 -- 7.5 Multistage Phase and Group Delay 187 -- 7.6 Optimization Process 188 -- 7.7 Synthesis Procedures 189 -- 7.8 Design Procedures 195 -- 7.9 Simulations and Realizations 198 -- 7.9.1 Two-Stage Low-Pass Active Filter 198 -- 7.9.2 Single-Stage Bandpass Active Filter 200 -- 7.9.3 Single-Stage Bandpass Active Filter MMIC Realization 202 -- References 206 -- 8 Passive Microwave Equalizers for Radar Receiver Design 207 -- 8.1 Introduction 207 -- 8.2 Equalizer Needs for Radar Application 208 -- 8.3 Passive Equalizer Representation 209 -- 8.4 Optimization Process 212 -- 8.5 Examples of Microwave Equalizers for Radar Receivers 213 -- 8.5.1 Sixth-Order Equalizer with No Transmission Zeros 213 -- 8.5.2 Sixth-Order Equalizer with Two Transmission Zeros 214 -- References 217 -- 9 Synthesis of Microwave Antennas 219 -- 9.1 Introduction 219 -- 9.2 Antenna Needs 219 -- 9.3 Antenna Equalizer Representation 221 -- 9.4 Optimization Process 222 -- 9.5 Examples of Antenna-Matching Network Designs 223 -- 9.5.1 Mid-Band Star Antenna 223 -- 9.5.2 Broadband Horn Antenna 224 -- References 227 -- Appendix A: Multistage Transducer Gain 229 -- Appendix B: Levenberg / Marquardt / More Optimization Algorithm 239 -- Appendix C: Noise Correlation Matrix 245 -- Appendix D: Network Synthesis Using the Transfer Matrix 253. Index 271. |
Record Nr. | UNINA-9910830642103321 |
Jarry Pierre <1946-> | ||
Hoboken : , : John Wiley & Sons, Inc., , 2016 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|