Crustal magmatic system evolution : anatomy, architecture, and physico-chemical processes / / Matteo Masotta, Christoph Beier and Silvio Mollo, editors |
Pubbl/distr/stampa | Hoboken, New Jersey : , : American Geophysical Union : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (254 pages) |
Disciplina | 552.2 |
Collana | Geophysical monograph |
Soggetto topico |
Magmas
Magmatism Volcanoes |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-56447-6
1-119-56446-8 1-119-56448-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part I Architecture of Crustal Magmatic Systems -- Chapter 1 Geothermobarometry of Mafic and Ultramafic Xenoliths: Examples From Hualalai and Mauna Kea Volcanoes, Hawaii -- 1.1. Introduction -- 1.2. Geological and Petrological Background -- 1.3. Revised Geothermobarometry of Mauna Kea and Hualalai Xenoliths -- 1.3.1. Rationale and Data Selection -- 1.3.2. Temperature Estimates -- 1.3.3. Pressure Estimates -- 1.4. Discussion -- 1.4.1. Comparisons with Previous Estimates and Implications of the Results -- 1.4.2. Geobarometry of Xenoliths as One of the Links between Petrology and Geophysics -- 1.5. Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 2 Trace Element Geothermometry and Geospeedometry for Cumulate Rocks: Quantitative Constraints on Thermal and Magmatic Processes During Igneous Crust Formation -- 2.1. Introduction -- 2.2. A Trace Element Perspective for Decoding Thermal and Magmatic Records in Minerals -- 2.2.1. Equilibrium Exchange -- 2.2.2. Chemical Diffusion -- 2.3. Trace Element Geothermometry -- 2.3.1. Theoretical Basis -- 2.3.2. Trace Element Partitioning -- 2.3.3. Geothermometers for Mafic Cumulates -- 2.4. Trace Element Geospeedometry -- 2.4.1. Diffusion and Geospeedometry -- 2.4.2. Basic Idea of Geospeedometer Design -- 2.4.3. The Mg-REE Coupled Geospeedometer for Mafic Cumulates -- 2.5. A Case Study on Oceanic Crust Formation -- 2.6. Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Magma Storage at Ocean Islands: Insights From Cape Verde -- 3.1. Introduction -- 3.2. The Cape Verde Archipelago -- 3.2.1. Geochronology of the Cape Verde Archipelago -- 3.2.2. The Geology of Santiago -- 3.2.3. The Geology of Fogo -- 3.2.4. The Geology of Brava -- 3.2.5. The Cadamosto Seamount.
3.2.6. Volcanic Eruptions and Hazards at Fogo -- 3.3. Magmatic Processes -- 3.4. Magma Storage in Southern Cape Verde -- 3.4.1. Controls on the Depth of Magma Storage -- 3.5. Insights Into the Shallower Magmatic System -- 3.6. Ocean Islands Globally -- 3.7. Conclusions and Recommendations -- Acknowledgments -- References -- Chapter 4 Anatomy of Intraplate Monogenetic Alkaline Basaltic Magmatism: Clues From Magma, Crystals, and Glass -- 4.1. Introduction -- 4.2. Origin of Intraplate Monogenetic Basaltic Systems -- 4.3. Insights From Whole‐Rock Chemical Data -- 4.4. Insights From Crystal Compositions -- 4.5. Insights From Glass Compositions -- 4.6. Summary and Concluding Remarks -- Acknowledgments -- References -- Part II Experimental and Numerical Constraints on Magmatic Processes -- Chapter 5 Magma Differentiation and Contamination: Constraints From Experimental and Field Evidences -- 5.1. Introduction -- 5.2. Geological and Geochemical Inferences on Fractionation -- 5.3. Mechanisms of Liquid-Crystal Separation -- 5.3.1. Gravitational Collapse and Compaction -- 5.3.2. Crystallization in a Vertical (Non‐Gravitational) TBL -- 5.4. Magma Contamination by Country-Rock Assimilation -- 5.4.1. Field Relations Supporting Assimilation and Magma Contamination -- 5.4.2. Experiments on Contamination -- 5.5. Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Crystal and Volatile Controls on the Mixing and Mingling of Magmas -- 6.1. Introduction: Magma Mixing and Mingling and Volcanic Plumbing Systems -- 6.1.1. Chemical Mixing -- 6.1.2. Physical Mingling -- 6.2. Controls on Magma Mingling: Observations, Experiments, and Numerical Models -- 6.2.1. Field Observations -- 6.2.2. Analogue Experiments -- 6.2.3. High-Temperature and/or High-Pressure Experiments -- 6.2.4. Numerical Models. 6.3. Petrologic Constraints on Mingling Conditions: Petrographic Interpretations -- 6.3.1. Volcanic Systems -- 6.3.2. Phenocryst, Xenocryst, and Groundmass Textures and Chemistries -- 6.3.3. Interpretation of Textures and Chemistries -- 6.3.4. Conceptual Model of Magma Mixing and Mingling -- 6.4. Quantitative Modeling of Crystal and Volatile Controls on Mixing and Mingling -- 6.4.1. The Model of Andrews and Manga (2014) -- 6.4.2. The Model of Bergantz et al. (2015) -- 6.4.3. The Model of Montagna et al. (2015) -- 6.4.4. Comparison and Common Limitations -- 6.5. Conclusions and Outlook for Future Research -- Acknowledgments -- References -- Chapter 7 From Binary Mixing to Magma Chamber Simulator: Geochemical Modeling of Assimilation in Magmatic Systems -- 7.1. Introduction -- 7.2. The End-Member Modes of Magmatic Interaction -- 7.2.1. Defining Homogeneity in Mixtures -- 7.2.2. Terminology of Mixing in Magmatic Systems -- 7.2.3. Mixing Versus Assimilation -- 7.2.4. Defining the End‐Member Modes of Magmatic Interaction -- 7.3. Overview of Geochemical Models of Assimilation -- 7.3.1. In Bunsen's Footsteps: Simple Binary Mixing Model -- 7.3.2. Assimilation Coupled With Fractional Crystallization: AFCDP -- 7.3.3. Integration of Thermodynamic Constraints Into Modeling Assimilation: EC-AFC -- 7.3.4. Phase Equilibria of Assimilation: MCS -- 7.3.5. Comparison of the Different Assimilation Models -- 7.3.6. MCS Applied to a Natural System: Flood Basalts From Antarctica -- 7.4. Summary -- Acknowledgments -- References -- Part III Timescales of Magma Dynamics -- Chapter 8 Elemental Diffusion Chronostratigraphy: Time-Integrated Insights Into the Dynamics of Plumbing Systems -- 8.1. Introduction -- 8.2. Geospeedometry: Approach and Limitations -- 8.3. Isothermal Versus Non-Isothermal Approach -- 8.4. The Temperature Conundrum. 8.5. Two Examples: Stromboli and Popocatépetl Volcanoes -- 8.6. Resolving Elemental Diffusion Stratigraphy -- 8.7. Uncertainties -- 8.8. Conclusions: A Way Forward -- Acknowledgments -- References -- Chapter 9 Interpreting Magma Dynamics Through a Statistically Refined Thermometer: Implications for Clinopyroxene Fe-Mg Diffusion Modeling and S ector Zoning at Stromboli -- 9.1. Introduction -- 9.2. Calibration and Test Data Sets -- 9.3. Parameterization of the Thermometer -- 9.4. Implications for Magma Dynamics at Stromboli -- 9.4.1. Modeling Magma Storage Timescales -- 9.4.2. Interpreting Hourglass Sector Zoning -- 9.5. Final Remarks -- Acknowledgments -- References -- Chapter 10 Insights Into Processes and Timescales of Magma Storage and Ascent From Textural and Geochemical Investigations: Case Studies From High‐Risk Neapolitan Volcanoes (Italy) -- 10.1. Introduction -- 10.2. Volcanological Background of Neapolitan Area -- 10.3. Magma Evolution in Crustal Reservoirs -- 10.3.1. Magma Storage Processes and Timescales for Neapolitan Volcanoes -- 10.4. Magma Ascent in Volcanic Conduit -- 10.4.1. Degassing and Crystallization of Ascending Alkaline Neapolitan Magmas -- 10.5. Conclusions: Implications for Future Hazards -- Acknowledgments -- References -- Index -- EULA. |
Record Nr. | UNINA-9910555178703321 |
Hoboken, New Jersey : , : American Geophysical Union : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Crustal magmatic system evolution : anatomy, architecture, and physico-chemical processes / / Matteo Masotta, Christoph Beier and Silvio Mollo, editors |
Pubbl/distr/stampa | Hoboken, New Jersey : , : American Geophysical Union : , : Wiley, , [2021] |
Descrizione fisica | 1 online resource (254 pages) |
Disciplina | 552.2 |
Collana | Geophysical monograph |
Soggetto topico |
Magmas
Magmatism Volcanoes |
ISBN |
1-119-56447-6
1-119-56446-8 1-119-56448-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- List of Contributors -- Preface -- Part I Architecture of Crustal Magmatic Systems -- Chapter 1 Geothermobarometry of Mafic and Ultramafic Xenoliths: Examples From Hualalai and Mauna Kea Volcanoes, Hawaii -- 1.1. Introduction -- 1.2. Geological and Petrological Background -- 1.3. Revised Geothermobarometry of Mauna Kea and Hualalai Xenoliths -- 1.3.1. Rationale and Data Selection -- 1.3.2. Temperature Estimates -- 1.3.3. Pressure Estimates -- 1.4. Discussion -- 1.4.1. Comparisons with Previous Estimates and Implications of the Results -- 1.4.2. Geobarometry of Xenoliths as One of the Links between Petrology and Geophysics -- 1.5. Conclusions and Future Perspectives -- Acknowledgments -- References -- Chapter 2 Trace Element Geothermometry and Geospeedometry for Cumulate Rocks: Quantitative Constraints on Thermal and Magmatic Processes During Igneous Crust Formation -- 2.1. Introduction -- 2.2. A Trace Element Perspective for Decoding Thermal and Magmatic Records in Minerals -- 2.2.1. Equilibrium Exchange -- 2.2.2. Chemical Diffusion -- 2.3. Trace Element Geothermometry -- 2.3.1. Theoretical Basis -- 2.3.2. Trace Element Partitioning -- 2.3.3. Geothermometers for Mafic Cumulates -- 2.4. Trace Element Geospeedometry -- 2.4.1. Diffusion and Geospeedometry -- 2.4.2. Basic Idea of Geospeedometer Design -- 2.4.3. The Mg-REE Coupled Geospeedometer for Mafic Cumulates -- 2.5. A Case Study on Oceanic Crust Formation -- 2.6. Concluding Remarks -- Acknowledgments -- References -- Chapter 3 Magma Storage at Ocean Islands: Insights From Cape Verde -- 3.1. Introduction -- 3.2. The Cape Verde Archipelago -- 3.2.1. Geochronology of the Cape Verde Archipelago -- 3.2.2. The Geology of Santiago -- 3.2.3. The Geology of Fogo -- 3.2.4. The Geology of Brava -- 3.2.5. The Cadamosto Seamount.
3.2.6. Volcanic Eruptions and Hazards at Fogo -- 3.3. Magmatic Processes -- 3.4. Magma Storage in Southern Cape Verde -- 3.4.1. Controls on the Depth of Magma Storage -- 3.5. Insights Into the Shallower Magmatic System -- 3.6. Ocean Islands Globally -- 3.7. Conclusions and Recommendations -- Acknowledgments -- References -- Chapter 4 Anatomy of Intraplate Monogenetic Alkaline Basaltic Magmatism: Clues From Magma, Crystals, and Glass -- 4.1. Introduction -- 4.2. Origin of Intraplate Monogenetic Basaltic Systems -- 4.3. Insights From Whole‐Rock Chemical Data -- 4.4. Insights From Crystal Compositions -- 4.5. Insights From Glass Compositions -- 4.6. Summary and Concluding Remarks -- Acknowledgments -- References -- Part II Experimental and Numerical Constraints on Magmatic Processes -- Chapter 5 Magma Differentiation and Contamination: Constraints From Experimental and Field Evidences -- 5.1. Introduction -- 5.2. Geological and Geochemical Inferences on Fractionation -- 5.3. Mechanisms of Liquid-Crystal Separation -- 5.3.1. Gravitational Collapse and Compaction -- 5.3.2. Crystallization in a Vertical (Non‐Gravitational) TBL -- 5.4. Magma Contamination by Country-Rock Assimilation -- 5.4.1. Field Relations Supporting Assimilation and Magma Contamination -- 5.4.2. Experiments on Contamination -- 5.5. Concluding Remarks -- Acknowledgments -- References -- Chapter 6 Crystal and Volatile Controls on the Mixing and Mingling of Magmas -- 6.1. Introduction: Magma Mixing and Mingling and Volcanic Plumbing Systems -- 6.1.1. Chemical Mixing -- 6.1.2. Physical Mingling -- 6.2. Controls on Magma Mingling: Observations, Experiments, and Numerical Models -- 6.2.1. Field Observations -- 6.2.2. Analogue Experiments -- 6.2.3. High-Temperature and/or High-Pressure Experiments -- 6.2.4. Numerical Models. 6.3. Petrologic Constraints on Mingling Conditions: Petrographic Interpretations -- 6.3.1. Volcanic Systems -- 6.3.2. Phenocryst, Xenocryst, and Groundmass Textures and Chemistries -- 6.3.3. Interpretation of Textures and Chemistries -- 6.3.4. Conceptual Model of Magma Mixing and Mingling -- 6.4. Quantitative Modeling of Crystal and Volatile Controls on Mixing and Mingling -- 6.4.1. The Model of Andrews and Manga (2014) -- 6.4.2. The Model of Bergantz et al. (2015) -- 6.4.3. The Model of Montagna et al. (2015) -- 6.4.4. Comparison and Common Limitations -- 6.5. Conclusions and Outlook for Future Research -- Acknowledgments -- References -- Chapter 7 From Binary Mixing to Magma Chamber Simulator: Geochemical Modeling of Assimilation in Magmatic Systems -- 7.1. Introduction -- 7.2. The End-Member Modes of Magmatic Interaction -- 7.2.1. Defining Homogeneity in Mixtures -- 7.2.2. Terminology of Mixing in Magmatic Systems -- 7.2.3. Mixing Versus Assimilation -- 7.2.4. Defining the End‐Member Modes of Magmatic Interaction -- 7.3. Overview of Geochemical Models of Assimilation -- 7.3.1. In Bunsen's Footsteps: Simple Binary Mixing Model -- 7.3.2. Assimilation Coupled With Fractional Crystallization: AFCDP -- 7.3.3. Integration of Thermodynamic Constraints Into Modeling Assimilation: EC-AFC -- 7.3.4. Phase Equilibria of Assimilation: MCS -- 7.3.5. Comparison of the Different Assimilation Models -- 7.3.6. MCS Applied to a Natural System: Flood Basalts From Antarctica -- 7.4. Summary -- Acknowledgments -- References -- Part III Timescales of Magma Dynamics -- Chapter 8 Elemental Diffusion Chronostratigraphy: Time-Integrated Insights Into the Dynamics of Plumbing Systems -- 8.1. Introduction -- 8.2. Geospeedometry: Approach and Limitations -- 8.3. Isothermal Versus Non-Isothermal Approach -- 8.4. The Temperature Conundrum. 8.5. Two Examples: Stromboli and Popocatépetl Volcanoes -- 8.6. Resolving Elemental Diffusion Stratigraphy -- 8.7. Uncertainties -- 8.8. Conclusions: A Way Forward -- Acknowledgments -- References -- Chapter 9 Interpreting Magma Dynamics Through a Statistically Refined Thermometer: Implications for Clinopyroxene Fe-Mg Diffusion Modeling and S ector Zoning at Stromboli -- 9.1. Introduction -- 9.2. Calibration and Test Data Sets -- 9.3. Parameterization of the Thermometer -- 9.4. Implications for Magma Dynamics at Stromboli -- 9.4.1. Modeling Magma Storage Timescales -- 9.4.2. Interpreting Hourglass Sector Zoning -- 9.5. Final Remarks -- Acknowledgments -- References -- Chapter 10 Insights Into Processes and Timescales of Magma Storage and Ascent From Textural and Geochemical Investigations: Case Studies From High‐Risk Neapolitan Volcanoes (Italy) -- 10.1. Introduction -- 10.2. Volcanological Background of Neapolitan Area -- 10.3. Magma Evolution in Crustal Reservoirs -- 10.3.1. Magma Storage Processes and Timescales for Neapolitan Volcanoes -- 10.4. Magma Ascent in Volcanic Conduit -- 10.4.1. Degassing and Crystallization of Ascending Alkaline Neapolitan Magmas -- 10.5. Conclusions: Implications for Future Hazards -- Acknowledgments -- References -- Index -- EULA. |
Record Nr. | UNINA-9910830866303321 |
Hoboken, New Jersey : , : American Geophysical Union : , : Wiley, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|