Advances in visual computing : 17th International Symposium, ISVC 2022, San Diego, CA, USA, October 3-5, 2022, proceedings, part II. / / edited by George Bebis, [and eight others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (466 pages) |
Disciplina | 929.605 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computer vision |
ISBN | 3-031-20716-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Keynote Talks -- Towards Scaling Up GANs -- Sensible Machine Learning for Geometry -- Designing Augmented Reality for the Future of Work -- The Future of Visual Computing via Foundation Models (Banquet Keynote Talk) -- 3D Reconstruction: Leveraging Synthetic Data for Lightweight Reconstruction -- Human-AI Interaction in Visual Analytics: Designing for the "Two Black Boxes" Problem -- Contents - Part II -- Contents - Part I -- ST: Neuro-inspired Artificial Intelligence -- Brain Shape Correspondence Analysis Using Functional Maps -- 1 Introduction -- 2 Materials and Methods -- 2.1 Database -- 2.2 Methodology -- 3 Results -- 3.1 First Experiment -- 3.2 Second Experiment -- 3.3 Third Experiment -- 4 Conclusions -- References -- Biomimetic Oculomotor Control with Spiking Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Eye Model and Neuromuscular Oculomotor Controller -- 4 Spiking Neurons -- 4.1 Encoding the Input Signals -- 4.2 Outputs -- 5 The SLiNet Model -- 5.1 Architecture -- 5.2 Training -- 6 Experiments -- 6.1 Eye Movements -- 6.2 Comparison to Human Eye Movements -- 7 Conclusions -- References -- Border Ownership, Category Selectivity and Beyond -- 1 Introduction -- 2 Implementation -- 2.1 Border-Ownership Coding Method -- 2.2 Category-Selective Coding Method -- 2.3 TcNet -- 3 Results -- 3.1 Datasets -- 3.2 Statistic Evaluation Criteria -- 4 Discussion -- 4.1 T-Junctions and Other 'KEY' Points -- 4.2 Global Context Awareness -- 4.3 Early Object Representation, 'PRoto-Object' -- 4.4 Relation to Biological Vision Systems -- 5 Summary -- References -- Sparse Kernel Transfer Learning -- 1 Introduction -- 2 Background -- 2.1 Background in Convolutional Neural Networks -- 2.2 Background in Sparse Coding -- 3 Methodology -- 3.1 Dictionary Learning -- 3.2 Initialization Techniques -- 3.3 Datasets.
3.4 Kernel Transfer Learning -- 4 Experiments and Results -- 4.1 Comparison with Other Initialization Methods -- 4.2 Learning with Less Labels -- 4.3 Breast Cancer Detection -- 4.4 Intepretability and Complexity -- 5 Conclusion -- References -- Applications -- Photobombing Removal Benchmarking -- 1 Introduction -- 2 Related Work -- 2.1 Traditional Methods -- 2.2 Deep Learning-based Methods -- 3 Photobombing Removal Benchmark -- 3.1 Benchmarking Dataset -- 3.2 Benchmarking Methods -- 4 Experiments -- 4.1 Performance Metrics -- 4.2 Experimental Results -- 5 Conclusion and Future Works -- References -- Automatic Detection and Recognition of Products and Planogram Conformity Analysis in Real Time on Store Shelves -- 1 Introduction -- 1.1 Features for Detection of Retails Products -- 1.2 Detection of Single Product -- 2 Clustering by Products Famillies -- 2.1 Multi-object Detection with ASIFT -- 2.2 Distance Normalisation -- 2.3 DBSCAN: Products Famillies -- 2.4 Shelf Planogram Conformity Rate -- 3 Experiments -- 3.1 Database -- 3.2 Evaluation Metrics -- 4 Conclusion -- References -- Enhancing Privacy in Computer Vision Applications: An Emotion Preserving Approach to Obfuscate Faces -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Face Detection -- 3.2 Face Selection -- 3.3 Face Reconstruction -- 3.4 Color Adaptation -- 3.5 Cloning -- 4 Validation -- 4.1 Experiment -- 4.2 Results -- 5 Conclusion and Future Work -- References -- House Price Prediction via Visual Cues and Estate Attributes -- 1 Introduction -- 2 Related Work -- 3 Proposed Work -- 3.1 Data Collection -- 3.2 Computational Model -- 4 Experiments -- 4.1 Evaluation Metrics -- 4.2 Experimental Results -- 4.3 Ablation Studies -- 5 Conclusion and Future Works -- References -- DRB-Net: Dilated Residual Block Network for Infrared Image Restoration -- 1 Introduction -- 2 Related Work. 2.1 Non-learning Denoising Methods -- 2.2 Discriminative Learning Denoising Methods -- 2.3 Deep Learning for IR Imaging -- 3 Proposed Architecture -- 3.1 Why Dilated Convolution? -- 3.2 Residual Blocks -- 3.3 Architecture and Compared Methods -- 4 Dataset -- 4.1 Sample Preparation and Image Acquisition -- 4.2 Dataset Creation -- 4.3 Implementation -- 5 Experiments -- 5.1 DRB-Net Specification -- 5.2 Denoising of Synthetic Noisy Data -- 5.3 Generalization and Robustness Test -- 6 Conclusion and Future Work -- References -- Segmentation and Tracking -- Saliency Can Be All You Need in Contrastive Self-supervised Learning -- 1 Introduction -- 2 Motivation and Background -- 2.1 Related Work -- 2.2 Concrete Background -- 3 Implementation, Setup and Results -- 3.1 Setup and Datasets -- 3.2 Preliminary: Running SGD on NORCE-PV and MultiRes-PV Datasets -- 3.3 An Efficient Implementation -- 3.4 Using SGD as an Augmentation Policy in Contrastive SSL Algorithms -- 4 Discussion -- 5 Conclusions -- References -- GCEENet: A Global Context Enhancement and Exploitation for Medical Image Segmentation -- 1 Introduction -- 2 Related Work -- 2.1 Convolutional Neural Networks for Semantic Segmentation -- 2.2 Contextual Information Modeling -- 3 Proposed Architecture -- 3.1 Overview -- 3.2 Global Context Encoder Module -- 3.3 Local Distribution -- 3.4 Aggregator Module -- 3.5 Loss Function -- 4 Experiments and Discussion -- 4.1 Benchmark Datasets -- 4.2 Experiment Settings -- 5 Results and Discussion -- 5.1 Ablation Study -- 5.2 Comparison to Baseline Models -- 6 Conclusion -- References -- V2F: Real Time Video Segmentation with Apache Flink -- 1 Introduction -- 2 Related Work -- 3 Video2Flink Architecture -- 3.1 V2F Operators -- 4 Experiments -- 5 Conclusions and Future Work -- References -- Joint Discriminative and Metric Embedding Learning for Person Re-identification. 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Classification Losses -- 3.2 Metric Learning Loss -- 3.3 Joint Classification and Metric Loss -- 3.4 Network Architecture -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Comparison with State-of-the-Art Methods -- 4.3 Ablation Study -- 5 Conclusions -- References -- Transformer Networks for Future Person Localization in First-Person Videos -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Problem Overview -- 3.2 Input Overview -- 3.3 Implementation Details -- 4 Experiments -- 4.1 Evaluation Metrics and Baselines -- 4.2 Quantitative Results -- 4.3 Additional Analysis -- 4.4 Inference Time Analysis -- 5 Conclusion -- References -- Virtual Reality -- VR-SFT: Reproducing Swinging Flashlight Test in Virtual Reality to Detect Relative Afferent Pupillary Defect -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Swinging Flashlight Test in Virtual Reality -- 3.2 VR Implementation and Experimental Software -- 3.3 RAPD Scoring -- 4 Dataset -- 5 Data Analysis and Results -- 6 Discussion and Future Work -- References -- A Quantitative Analysis of Redirected Walking in Virtual Reality Using Saccadic Eye Movements -- 1 Introduction -- 2 Methodology -- 2.1 Simulation and Hardware -- 2.2 Simulation Tasks and Data Collection -- 2.3 Eye Tracking -- 2.4 Questionnaire -- 2.5 Demographics -- 3 Results -- 4 Conclusion and Future Work -- References -- A DirectX-Based DICOM Viewer for Multi-user Surgical Planning in Augmented Reality -- 1 Introduction -- 2 Related Work -- 2.1 Holographic DICOM Viewer Prototypes -- 2.2 Interaction with 3D Objects -- 3 System Design Overview -- 4 Direct3D-Based DICOM Viewer Implementation -- 4.1 Smartphones as User Input Devices -- 4.2 Functionalities -- 4.3 Marker-Based 3D Object Placement -- 5 User Interactions -- 5.1 Virtual 2D Plane Touch. 5.2 3D User Interaction -- 6 Experiments -- 7 Conclusions -- References -- Virtual-Reality Based Vestibular Ocular Motor Screening for Concussion Detection Using Machine-Learning -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Naive Bayes -- 3.2 Decision Tree -- 3.3 Random Forest -- 3.4 Support Vector Classifer -- 3.5 AdaBoost -- 3.6 Gaussian Process Classifier -- 3.7 Logistic Regression -- 3.8 Perceptron -- 3.9 Isolation Forest -- 3.10 One Class SVM -- 4 Experimental Analysis -- 4.1 Data Collection Using Virtual-Reality Headset -- 4.2 Data Splitting for Training and Testing -- 4.3 Qualitative Evaluation -- 4.4 Quantitative Evaluation -- 5 Conclusion -- References -- Posters -- GUILD - A Generator for Usable Images in Large-Scale Datasets -- 1 Introduction -- 2 Related Work -- 2.1 Manual Collection of Datasets -- 2.2 Synthetic Generation of Datasets -- 3 Implementation -- 3.1 Approach -- 3.2 Object Models -- 3.3 Environments -- 3.4 Label Generation -- 4 Evaluation -- 4.1 Evaluation Design -- 4.2 Evaluation Datasets -- 4.3 Accuracy -- 4.4 Generalizability -- 4.5 Variety -- 5 Conclusion and Future Work -- References -- Distributional Semantics of Line Charts for Trend Classification -- 1 Introduction -- 2 Dataset -- 3 Related Work -- 3.1 Information Graphic Description Generation -- 3.2 Prototype Learning -- 3.3 Bag of Words for Computer Vision -- 3.4 Distributional Semantics -- 4 Architecture and Methodology -- 4.1 Forming the Vocabulary -- 4.2 Line Chart Embeddings -- 4.3 Classification -- 5 Implementation -- 6 Experiments and Results -- 6.1 Classification Task -- 6.2 Results -- 7 Discussion -- 8 Conclusion -- References -- Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms -- 1 Introduction -- 2 Background and Motivation -- 2.1 End-to-End Pipeline -- 2.2 Genetic Algorithm -- 2.3 Binary Tournament Selection. 2.4 Simulated Binary Crossover (SBX). |
Record Nr. | UNISA-996503470203316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in visual computing : 17th international symposium, ISVC 2022, San Diego, CA, USA, October 3-5, 2022, proceedings, part I / / edited by George Bebis [and eight others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (486 pages) |
Disciplina | 929.605 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computers |
ISBN | 3-031-20713-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Keynote Talks -- Towards Scaling Up GANs -- Sensible Machine Learning for Geometry -- Designing Augmented Reality for the Future of Work -- The Future of Visual Computing via Foundation Models (Banquet Keynote Talk) -- 3D Reconstruction: Leveraging Synthetic Data for Lightweight Reconstruction -- Human-AI Interaction in Visual Analytics: Designing for the "Two Black Boxes" Problem -- Contents - Part I -- Contents - Part II -- Deep Learning I -- Unsupervised Structure-Consistent Image-to-Image Translation -- 1 Introduction -- 2 Background and Related Work -- 3 Method -- 3.1 Encoder -- 3.2 Generator -- 3.3 Structure and Texture Disentanglement -- 3.4 Objective Function -- 4 Experiments -- 4.1 Comparison to State-of-the-Art -- 5 Applications -- 5.1 Addressing Bias in Training Datasets -- 5.2 Training Datasets for Semantic Segmentation of Satellite Images -- 6 Discussion and Limitations -- 7 Conclusions -- References -- Learning Representations for Masked Facial Recovery -- 1 Introduction -- 2 Relevant Works -- 3 Method -- 3.1 Baseline Model -- 3.2 Unmasking Model -- 3.3 Datasets -- 3.4 Implementation Details -- 4 Experimental Results -- 5 Conclusions -- References -- Deep Learning Based Shrimp Classification -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Acquisition -- 3.2 Preprocessing -- 3.3 Classification -- 4 Experimental Results -- 5 Conclusions -- References -- Gait Emotion Recognition Using a Bi-modal Deep Neural Network -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 4 Experimental Results -- 5 Conclusion and Future Work -- References -- Attacking Frequency Information with Enhanced Adversarial Networks to Generate Adversarial Samples -- 1 Introduction -- 2 Related Work -- 2.1 Adversarial Samples -- 2.2 Black-Box Attacks -- 2.3 Frequency Features and Attacks.
3 Our Frequency Attack Approach -- 3.1 Separate High and Low Frequency Information -- 3.2 Dual Discriminators Support Attack -- 3.3 Frequency Attack Framework -- 3.4 Network Architecture -- 3.5 Loss Function -- 4 Experiments -- 4.1 Evaluation Metric -- 4.2 Ablation Study -- 4.3 Transferability of FAF -- 4.4 Attack Under Defenses -- 5 Conclusion -- References -- Visualization -- Explainable Interactive Projections for Image Data -- 1 Introduction -- 2 Related Work -- 2.1 Interactive Dimensionality Reduction -- 2.2 Semantic Interaction -- 2.3 Explainability in Deep Learning -- 3 Tasks -- 3.1 Define Custom Similarities Based on Prior Knowledge -- 3.2 Link Human and Machine Defined Similarities -- 4 Workflow and Methodology -- 4.1 Initial State -- 4.2 Interactions and Inverse Projection -- 4.3 Visual Explanations -- 5 Usage Scenario: Edamame Pods -- 6 Discussion -- 7 Conclusion -- References -- MultiProjector: Temporal Projection for Multivariates Time Series -- 1 Introduction -- 2 Related Work -- 2.1 Visualizing High Dimensional Temporal Datasets -- 2.2 Dimension Reduction -- 3 Methodology -- 3.1 Clusterings -- 3.2 Multidimensional Projections -- 3.3 Visualizing the Time Dimension -- 3.4 Multivariate Representations -- 4 Use Cases -- 4.1 Use Case 1: Monthly US Employment Rate -- 4.2 Use Case 2: Monitoring Computer Metrics -- 4.3 Use Case 3: Plant Genetics -- 4.4 Discussion -- 5 Conclusion -- References -- Deep Learning Based Super-Resolution for Medical Volume Visualization with Direct Volume Rendering -- 1 Introduction -- 2 Related Work -- 2.1 Image and Video Super-resolution -- 2.2 Resolution Enhancement for Rendered Content -- 3 Methodology -- 3.1 Direct Volume Rendering Framework -- 3.2 Network Architecture -- 4 Dataset -- 5 Evaluation -- 5.1 Performance Gain with Additional Feature at the Input. 5.2 Performance Gain with Additional Previous Frames -- 5.3 Upsampling Ratio -- 6 Conclusion and Future Work -- References -- Interactive Virtual Reality Exploration of Large-Scale Datasets Using Omnidirectional Stereo Images -- 1 Introduction -- 2 Related Work -- 2.1 Image-Based Visualization -- 2.2 Virtual Reality for Large-Scale Data Sets -- 3 Science Drivers -- 3.1 Cancer Cell Transport -- 3.2 Graphene Superlubricity -- 4 Cinema ODS Image Database -- 4.1 Rendering -- 5 Interactive Cinema ODS Viewer -- 6 Evaluation -- 6.1 Visualization Latency -- 6.2 VR Frame Rate -- 6.3 Qualitative Feedback -- 7 Conclusion -- References -- A Quantitative Analysis of Labeling Issues in the CelebA Dataset -- 1 Introduction -- 2 Related Work -- 3 Incorrect Labels -- 3.1 Contradicting and Conflicting Labels -- 3.2 Mislabeling -- 4 Inconsistent Labels -- 4.1 Consistency -- 4.2 Agreement -- 4.3 Correlated Labels -- 5 Conclusion -- References -- Object Detection and Recognition -- Recognition of Aquatic Invasive Species Larvae Using Autoencoder-Based Feature Averaging -- 1 Introduction -- 2 Related Work -- 2.1 Aquatic Invasive Species -- 2.2 Local Responses to Aquatic Invasive Species -- 2.3 Classification with Image Sets -- 2.4 Underwater Image Classification -- 2.5 Autoencoders -- 3 Methodology -- 3.1 Solution Description -- 3.2 Convolutional Autoencoder -- 3.3 Classification Model -- 3.4 Activation Functions -- 3.5 Loss Functions -- 3.6 Base Model -- 3.7 Dataset -- 4 Results -- 4.1 Evaluation Metric -- 4.2 Quantitative Analysis -- 4.3 Comparative Analysis -- 5 Conclusion -- References -- Subspace Analysis for Multi-temporal Disaster Mapping Using Satellite Imagery -- 1 Introduction -- 2 Subspace Learning-Based Disaster Mapping -- 2.1 Region Delineation -- 2.2 Segmentation Fusion -- 2.3 Subspace Learning for Disaster Mapping. 3 Determining the Changed and Unchanged Regions -- 4 Experiments, Results and Discussion -- 4.1 Experimental Setup -- 4.2 Results and Discussion -- 5 Conclusion -- References -- Open-Set Plankton Recognition Using Similarity Learning -- 1 Introduction -- 2 Related Work -- 2.1 Plankton Recognition -- 2.2 Open-Set Classification -- 2.3 Classification by Metric Learning -- 3 Proposed Method -- 3.1 Angular Margin Loss -- 4 Experiments -- 4.1 Data -- 4.2 Description of Experiments -- 4.3 Results -- 5 Conclusions -- References -- Sensor Fusion Operators for Multimodal 2D Object Detection -- 1 Introduction -- 2 Related Work -- 3 Camera-LiDAR 2D Object Detector -- 4 Sensor Fusion Operators -- 5 Experimental Results -- 5.1 Experimental Setting -- 5.2 Evaluation of Early Sensor Fusion -- 5.3 Evaluation of Mid-Level Sensor Fusion -- 5.4 Complexity Analysis -- 6 Conclusion -- References -- Learning When to Say ``I Don't Know -- 1 Introduction -- 2 Preliminaries -- 3 Related Work -- 4 Proposed Method -- 5 Experiments -- 5.1 Synthetic Data -- 5.2 Image Datasets -- 5.3 Text Datasets -- 5.4 Generalization from Validation to Test Data -- 5.5 Alternative Confidence Interval Formulations -- 5.6 Discussion -- 6 Conclusion -- References -- Multi-class Detection and Tracking of Intracorporeal Suturing Instruments in an FLS Laparoscopic Box Trainer Using Scaled-YOLOv4 -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Scaled-YOLOv4 Architecture -- 3.2 Measurement Algorithm -- 4 Experimental Setup -- 4.1 Dataset -- 4.2 Software Implementation -- 5 Results -- 6 Discussion -- 7 Conclusion and Future Work -- References -- Deep Learning II -- A New Approach to Visual Classification Using Concatenated Deep Learning for Multimode Fusion of EEG and Image Data -- 1 Introduction -- 2 Related Work -- 3 Datasets -- 3.1 EEG-ImageNet. 3.2 Visual Stimuli EEG Dataset: Real-World 3D Objects and Corresponding 2D Image Stimuli -- 4 Data Encoding and Processing -- 4.1 Classical Feature Extraction for EEG Data -- 4.2 Classical Feature Extraction for Image Data -- 4.3 Principal Component Analysis (PCA) Encoding -- 4.4 Grayscale-Image Encoding for EEG Data -- 5 Methods and Model Implementation -- 5.1 Conventional Machine Learning Classifiers -- 5.2 LSTM-Based EEG Model (LEM) ch17ourvisclasspaper -- 5.3 CNN-Based Image Model (CIM) ch17ourvisclasspaper -- 5.4 Grayscale-Image Encoded EEG Model (GEM) -- 5.5 Concatenation-Based Models ch17ourvisclasspaper -- 6 Experiments and Results -- 6.1 Baseline Visual Classification for EEG and Image Data -- 6.2 Classification Using Deep Learning Models -- 6.3 Hemispherical Brain Region Classification Comparison -- 6.4 Visual Classification Using Multimodal Deep Learning -- 6.5 Visual Classification for Real Object Versus Image as Stimuli -- 7 Discussion -- 8 Conclusion -- References -- Deep Learning-Based Classification of Plant Xylem Tissue from Light Micrographs -- 1 Introduction -- 2 Related Works -- 3 Dataset and Problem Definition -- 4 Methodology -- 4.1 Data Augmentation and Pre-processing -- 4.2 Cascading-Like Model -- 4.3 Global Contextualization Approach -- 5 Experiments and Results -- 5.1 Model Evaluation Metric -- 5.2 Baseline Results -- 5.3 Results -- 6 Discussion -- 7 Conclusion -- References -- VampNet: Unsupervised Vampirizing of Convolutional Networks -- 1 Introduction -- 2 Related Work -- 2.1 Correlation-Based Feature Map Analysis -- 2.2 Multitask Neural Networks -- 2.3 Networks Merging -- 3 Method -- 3.1 Linearity Between Feature Maps -- 3.2 Ranking Linearity Between Features -- 3.3 Vampirizing a Feature Using a Convolutional Operator -- 3.4 Vampirizing a Layer -- 3.5 Automatic Selection of the Layer to Be Replaced -- 4 Experiments. 4.1 Setup. |
Record Nr. | UNINA-9910634049103321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in visual computing : 17th International Symposium, ISVC 2022, San Diego, CA, USA, October 3-5, 2022, proceedings, part II. / / edited by George Bebis, [and eight others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (466 pages) |
Disciplina | 929.605 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computer vision |
ISBN | 3-031-20716-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Keynote Talks -- Towards Scaling Up GANs -- Sensible Machine Learning for Geometry -- Designing Augmented Reality for the Future of Work -- The Future of Visual Computing via Foundation Models (Banquet Keynote Talk) -- 3D Reconstruction: Leveraging Synthetic Data for Lightweight Reconstruction -- Human-AI Interaction in Visual Analytics: Designing for the "Two Black Boxes" Problem -- Contents - Part II -- Contents - Part I -- ST: Neuro-inspired Artificial Intelligence -- Brain Shape Correspondence Analysis Using Functional Maps -- 1 Introduction -- 2 Materials and Methods -- 2.1 Database -- 2.2 Methodology -- 3 Results -- 3.1 First Experiment -- 3.2 Second Experiment -- 3.3 Third Experiment -- 4 Conclusions -- References -- Biomimetic Oculomotor Control with Spiking Neural Networks -- 1 Introduction -- 2 Related Work -- 3 Eye Model and Neuromuscular Oculomotor Controller -- 4 Spiking Neurons -- 4.1 Encoding the Input Signals -- 4.2 Outputs -- 5 The SLiNet Model -- 5.1 Architecture -- 5.2 Training -- 6 Experiments -- 6.1 Eye Movements -- 6.2 Comparison to Human Eye Movements -- 7 Conclusions -- References -- Border Ownership, Category Selectivity and Beyond -- 1 Introduction -- 2 Implementation -- 2.1 Border-Ownership Coding Method -- 2.2 Category-Selective Coding Method -- 2.3 TcNet -- 3 Results -- 3.1 Datasets -- 3.2 Statistic Evaluation Criteria -- 4 Discussion -- 4.1 T-Junctions and Other 'KEY' Points -- 4.2 Global Context Awareness -- 4.3 Early Object Representation, 'PRoto-Object' -- 4.4 Relation to Biological Vision Systems -- 5 Summary -- References -- Sparse Kernel Transfer Learning -- 1 Introduction -- 2 Background -- 2.1 Background in Convolutional Neural Networks -- 2.2 Background in Sparse Coding -- 3 Methodology -- 3.1 Dictionary Learning -- 3.2 Initialization Techniques -- 3.3 Datasets.
3.4 Kernel Transfer Learning -- 4 Experiments and Results -- 4.1 Comparison with Other Initialization Methods -- 4.2 Learning with Less Labels -- 4.3 Breast Cancer Detection -- 4.4 Intepretability and Complexity -- 5 Conclusion -- References -- Applications -- Photobombing Removal Benchmarking -- 1 Introduction -- 2 Related Work -- 2.1 Traditional Methods -- 2.2 Deep Learning-based Methods -- 3 Photobombing Removal Benchmark -- 3.1 Benchmarking Dataset -- 3.2 Benchmarking Methods -- 4 Experiments -- 4.1 Performance Metrics -- 4.2 Experimental Results -- 5 Conclusion and Future Works -- References -- Automatic Detection and Recognition of Products and Planogram Conformity Analysis in Real Time on Store Shelves -- 1 Introduction -- 1.1 Features for Detection of Retails Products -- 1.2 Detection of Single Product -- 2 Clustering by Products Famillies -- 2.1 Multi-object Detection with ASIFT -- 2.2 Distance Normalisation -- 2.3 DBSCAN: Products Famillies -- 2.4 Shelf Planogram Conformity Rate -- 3 Experiments -- 3.1 Database -- 3.2 Evaluation Metrics -- 4 Conclusion -- References -- Enhancing Privacy in Computer Vision Applications: An Emotion Preserving Approach to Obfuscate Faces -- 1 Introduction -- 2 Related Work -- 3 Approach -- 3.1 Face Detection -- 3.2 Face Selection -- 3.3 Face Reconstruction -- 3.4 Color Adaptation -- 3.5 Cloning -- 4 Validation -- 4.1 Experiment -- 4.2 Results -- 5 Conclusion and Future Work -- References -- House Price Prediction via Visual Cues and Estate Attributes -- 1 Introduction -- 2 Related Work -- 3 Proposed Work -- 3.1 Data Collection -- 3.2 Computational Model -- 4 Experiments -- 4.1 Evaluation Metrics -- 4.2 Experimental Results -- 4.3 Ablation Studies -- 5 Conclusion and Future Works -- References -- DRB-Net: Dilated Residual Block Network for Infrared Image Restoration -- 1 Introduction -- 2 Related Work. 2.1 Non-learning Denoising Methods -- 2.2 Discriminative Learning Denoising Methods -- 2.3 Deep Learning for IR Imaging -- 3 Proposed Architecture -- 3.1 Why Dilated Convolution? -- 3.2 Residual Blocks -- 3.3 Architecture and Compared Methods -- 4 Dataset -- 4.1 Sample Preparation and Image Acquisition -- 4.2 Dataset Creation -- 4.3 Implementation -- 5 Experiments -- 5.1 DRB-Net Specification -- 5.2 Denoising of Synthetic Noisy Data -- 5.3 Generalization and Robustness Test -- 6 Conclusion and Future Work -- References -- Segmentation and Tracking -- Saliency Can Be All You Need in Contrastive Self-supervised Learning -- 1 Introduction -- 2 Motivation and Background -- 2.1 Related Work -- 2.2 Concrete Background -- 3 Implementation, Setup and Results -- 3.1 Setup and Datasets -- 3.2 Preliminary: Running SGD on NORCE-PV and MultiRes-PV Datasets -- 3.3 An Efficient Implementation -- 3.4 Using SGD as an Augmentation Policy in Contrastive SSL Algorithms -- 4 Discussion -- 5 Conclusions -- References -- GCEENet: A Global Context Enhancement and Exploitation for Medical Image Segmentation -- 1 Introduction -- 2 Related Work -- 2.1 Convolutional Neural Networks for Semantic Segmentation -- 2.2 Contextual Information Modeling -- 3 Proposed Architecture -- 3.1 Overview -- 3.2 Global Context Encoder Module -- 3.3 Local Distribution -- 3.4 Aggregator Module -- 3.5 Loss Function -- 4 Experiments and Discussion -- 4.1 Benchmark Datasets -- 4.2 Experiment Settings -- 5 Results and Discussion -- 5.1 Ablation Study -- 5.2 Comparison to Baseline Models -- 6 Conclusion -- References -- V2F: Real Time Video Segmentation with Apache Flink -- 1 Introduction -- 2 Related Work -- 3 Video2Flink Architecture -- 3.1 V2F Operators -- 4 Experiments -- 5 Conclusions and Future Work -- References -- Joint Discriminative and Metric Embedding Learning for Person Re-identification. 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Classification Losses -- 3.2 Metric Learning Loss -- 3.3 Joint Classification and Metric Loss -- 3.4 Network Architecture -- 4 Experiments -- 4.1 Implementation Details -- 4.2 Comparison with State-of-the-Art Methods -- 4.3 Ablation Study -- 5 Conclusions -- References -- Transformer Networks for Future Person Localization in First-Person Videos -- 1 Introduction -- 2 Related Work -- 3 Proposed Method -- 3.1 Problem Overview -- 3.2 Input Overview -- 3.3 Implementation Details -- 4 Experiments -- 4.1 Evaluation Metrics and Baselines -- 4.2 Quantitative Results -- 4.3 Additional Analysis -- 4.4 Inference Time Analysis -- 5 Conclusion -- References -- Virtual Reality -- VR-SFT: Reproducing Swinging Flashlight Test in Virtual Reality to Detect Relative Afferent Pupillary Defect -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Swinging Flashlight Test in Virtual Reality -- 3.2 VR Implementation and Experimental Software -- 3.3 RAPD Scoring -- 4 Dataset -- 5 Data Analysis and Results -- 6 Discussion and Future Work -- References -- A Quantitative Analysis of Redirected Walking in Virtual Reality Using Saccadic Eye Movements -- 1 Introduction -- 2 Methodology -- 2.1 Simulation and Hardware -- 2.2 Simulation Tasks and Data Collection -- 2.3 Eye Tracking -- 2.4 Questionnaire -- 2.5 Demographics -- 3 Results -- 4 Conclusion and Future Work -- References -- A DirectX-Based DICOM Viewer for Multi-user Surgical Planning in Augmented Reality -- 1 Introduction -- 2 Related Work -- 2.1 Holographic DICOM Viewer Prototypes -- 2.2 Interaction with 3D Objects -- 3 System Design Overview -- 4 Direct3D-Based DICOM Viewer Implementation -- 4.1 Smartphones as User Input Devices -- 4.2 Functionalities -- 4.3 Marker-Based 3D Object Placement -- 5 User Interactions -- 5.1 Virtual 2D Plane Touch. 5.2 3D User Interaction -- 6 Experiments -- 7 Conclusions -- References -- Virtual-Reality Based Vestibular Ocular Motor Screening for Concussion Detection Using Machine-Learning -- 1 Introduction -- 2 Related Work -- 3 Methodology -- 3.1 Naive Bayes -- 3.2 Decision Tree -- 3.3 Random Forest -- 3.4 Support Vector Classifer -- 3.5 AdaBoost -- 3.6 Gaussian Process Classifier -- 3.7 Logistic Regression -- 3.8 Perceptron -- 3.9 Isolation Forest -- 3.10 One Class SVM -- 4 Experimental Analysis -- 4.1 Data Collection Using Virtual-Reality Headset -- 4.2 Data Splitting for Training and Testing -- 4.3 Qualitative Evaluation -- 4.4 Quantitative Evaluation -- 5 Conclusion -- References -- Posters -- GUILD - A Generator for Usable Images in Large-Scale Datasets -- 1 Introduction -- 2 Related Work -- 2.1 Manual Collection of Datasets -- 2.2 Synthetic Generation of Datasets -- 3 Implementation -- 3.1 Approach -- 3.2 Object Models -- 3.3 Environments -- 3.4 Label Generation -- 4 Evaluation -- 4.1 Evaluation Design -- 4.2 Evaluation Datasets -- 4.3 Accuracy -- 4.4 Generalizability -- 4.5 Variety -- 5 Conclusion and Future Work -- References -- Distributional Semantics of Line Charts for Trend Classification -- 1 Introduction -- 2 Dataset -- 3 Related Work -- 3.1 Information Graphic Description Generation -- 3.2 Prototype Learning -- 3.3 Bag of Words for Computer Vision -- 3.4 Distributional Semantics -- 4 Architecture and Methodology -- 4.1 Forming the Vocabulary -- 4.2 Line Chart Embeddings -- 4.3 Classification -- 5 Implementation -- 6 Experiments and Results -- 6.1 Classification Task -- 6.2 Results -- 7 Discussion -- 8 Conclusion -- References -- Deep Learning Hyperparameter Optimization for Breast Mass Detection in Mammograms -- 1 Introduction -- 2 Background and Motivation -- 2.1 End-to-End Pipeline -- 2.2 Genetic Algorithm -- 2.3 Binary Tournament Selection. 2.4 Simulated Binary Crossover (SBX). |
Record Nr. | UNINA-9910634045803321 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in visual computing : 17th international symposium, ISVC 2022, San Diego, CA, USA, October 3-5, 2022, proceedings, part I / / edited by George Bebis [and eight others] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2022] |
Descrizione fisica | 1 online resource (486 pages) |
Disciplina | 929.605 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computers |
ISBN | 3-031-20713-0 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Preface -- Organization -- Keynote Talks -- Towards Scaling Up GANs -- Sensible Machine Learning for Geometry -- Designing Augmented Reality for the Future of Work -- The Future of Visual Computing via Foundation Models (Banquet Keynote Talk) -- 3D Reconstruction: Leveraging Synthetic Data for Lightweight Reconstruction -- Human-AI Interaction in Visual Analytics: Designing for the "Two Black Boxes" Problem -- Contents - Part I -- Contents - Part II -- Deep Learning I -- Unsupervised Structure-Consistent Image-to-Image Translation -- 1 Introduction -- 2 Background and Related Work -- 3 Method -- 3.1 Encoder -- 3.2 Generator -- 3.3 Structure and Texture Disentanglement -- 3.4 Objective Function -- 4 Experiments -- 4.1 Comparison to State-of-the-Art -- 5 Applications -- 5.1 Addressing Bias in Training Datasets -- 5.2 Training Datasets for Semantic Segmentation of Satellite Images -- 6 Discussion and Limitations -- 7 Conclusions -- References -- Learning Representations for Masked Facial Recovery -- 1 Introduction -- 2 Relevant Works -- 3 Method -- 3.1 Baseline Model -- 3.2 Unmasking Model -- 3.3 Datasets -- 3.4 Implementation Details -- 4 Experimental Results -- 5 Conclusions -- References -- Deep Learning Based Shrimp Classification -- 1 Introduction -- 2 Related Work -- 3 Proposed Approach -- 3.1 Acquisition -- 3.2 Preprocessing -- 3.3 Classification -- 4 Experimental Results -- 5 Conclusions -- References -- Gait Emotion Recognition Using a Bi-modal Deep Neural Network -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 4 Experimental Results -- 5 Conclusion and Future Work -- References -- Attacking Frequency Information with Enhanced Adversarial Networks to Generate Adversarial Samples -- 1 Introduction -- 2 Related Work -- 2.1 Adversarial Samples -- 2.2 Black-Box Attacks -- 2.3 Frequency Features and Attacks.
3 Our Frequency Attack Approach -- 3.1 Separate High and Low Frequency Information -- 3.2 Dual Discriminators Support Attack -- 3.3 Frequency Attack Framework -- 3.4 Network Architecture -- 3.5 Loss Function -- 4 Experiments -- 4.1 Evaluation Metric -- 4.2 Ablation Study -- 4.3 Transferability of FAF -- 4.4 Attack Under Defenses -- 5 Conclusion -- References -- Visualization -- Explainable Interactive Projections for Image Data -- 1 Introduction -- 2 Related Work -- 2.1 Interactive Dimensionality Reduction -- 2.2 Semantic Interaction -- 2.3 Explainability in Deep Learning -- 3 Tasks -- 3.1 Define Custom Similarities Based on Prior Knowledge -- 3.2 Link Human and Machine Defined Similarities -- 4 Workflow and Methodology -- 4.1 Initial State -- 4.2 Interactions and Inverse Projection -- 4.3 Visual Explanations -- 5 Usage Scenario: Edamame Pods -- 6 Discussion -- 7 Conclusion -- References -- MultiProjector: Temporal Projection for Multivariates Time Series -- 1 Introduction -- 2 Related Work -- 2.1 Visualizing High Dimensional Temporal Datasets -- 2.2 Dimension Reduction -- 3 Methodology -- 3.1 Clusterings -- 3.2 Multidimensional Projections -- 3.3 Visualizing the Time Dimension -- 3.4 Multivariate Representations -- 4 Use Cases -- 4.1 Use Case 1: Monthly US Employment Rate -- 4.2 Use Case 2: Monitoring Computer Metrics -- 4.3 Use Case 3: Plant Genetics -- 4.4 Discussion -- 5 Conclusion -- References -- Deep Learning Based Super-Resolution for Medical Volume Visualization with Direct Volume Rendering -- 1 Introduction -- 2 Related Work -- 2.1 Image and Video Super-resolution -- 2.2 Resolution Enhancement for Rendered Content -- 3 Methodology -- 3.1 Direct Volume Rendering Framework -- 3.2 Network Architecture -- 4 Dataset -- 5 Evaluation -- 5.1 Performance Gain with Additional Feature at the Input. 5.2 Performance Gain with Additional Previous Frames -- 5.3 Upsampling Ratio -- 6 Conclusion and Future Work -- References -- Interactive Virtual Reality Exploration of Large-Scale Datasets Using Omnidirectional Stereo Images -- 1 Introduction -- 2 Related Work -- 2.1 Image-Based Visualization -- 2.2 Virtual Reality for Large-Scale Data Sets -- 3 Science Drivers -- 3.1 Cancer Cell Transport -- 3.2 Graphene Superlubricity -- 4 Cinema ODS Image Database -- 4.1 Rendering -- 5 Interactive Cinema ODS Viewer -- 6 Evaluation -- 6.1 Visualization Latency -- 6.2 VR Frame Rate -- 6.3 Qualitative Feedback -- 7 Conclusion -- References -- A Quantitative Analysis of Labeling Issues in the CelebA Dataset -- 1 Introduction -- 2 Related Work -- 3 Incorrect Labels -- 3.1 Contradicting and Conflicting Labels -- 3.2 Mislabeling -- 4 Inconsistent Labels -- 4.1 Consistency -- 4.2 Agreement -- 4.3 Correlated Labels -- 5 Conclusion -- References -- Object Detection and Recognition -- Recognition of Aquatic Invasive Species Larvae Using Autoencoder-Based Feature Averaging -- 1 Introduction -- 2 Related Work -- 2.1 Aquatic Invasive Species -- 2.2 Local Responses to Aquatic Invasive Species -- 2.3 Classification with Image Sets -- 2.4 Underwater Image Classification -- 2.5 Autoencoders -- 3 Methodology -- 3.1 Solution Description -- 3.2 Convolutional Autoencoder -- 3.3 Classification Model -- 3.4 Activation Functions -- 3.5 Loss Functions -- 3.6 Base Model -- 3.7 Dataset -- 4 Results -- 4.1 Evaluation Metric -- 4.2 Quantitative Analysis -- 4.3 Comparative Analysis -- 5 Conclusion -- References -- Subspace Analysis for Multi-temporal Disaster Mapping Using Satellite Imagery -- 1 Introduction -- 2 Subspace Learning-Based Disaster Mapping -- 2.1 Region Delineation -- 2.2 Segmentation Fusion -- 2.3 Subspace Learning for Disaster Mapping. 3 Determining the Changed and Unchanged Regions -- 4 Experiments, Results and Discussion -- 4.1 Experimental Setup -- 4.2 Results and Discussion -- 5 Conclusion -- References -- Open-Set Plankton Recognition Using Similarity Learning -- 1 Introduction -- 2 Related Work -- 2.1 Plankton Recognition -- 2.2 Open-Set Classification -- 2.3 Classification by Metric Learning -- 3 Proposed Method -- 3.1 Angular Margin Loss -- 4 Experiments -- 4.1 Data -- 4.2 Description of Experiments -- 4.3 Results -- 5 Conclusions -- References -- Sensor Fusion Operators for Multimodal 2D Object Detection -- 1 Introduction -- 2 Related Work -- 3 Camera-LiDAR 2D Object Detector -- 4 Sensor Fusion Operators -- 5 Experimental Results -- 5.1 Experimental Setting -- 5.2 Evaluation of Early Sensor Fusion -- 5.3 Evaluation of Mid-Level Sensor Fusion -- 5.4 Complexity Analysis -- 6 Conclusion -- References -- Learning When to Say ``I Don't Know -- 1 Introduction -- 2 Preliminaries -- 3 Related Work -- 4 Proposed Method -- 5 Experiments -- 5.1 Synthetic Data -- 5.2 Image Datasets -- 5.3 Text Datasets -- 5.4 Generalization from Validation to Test Data -- 5.5 Alternative Confidence Interval Formulations -- 5.6 Discussion -- 6 Conclusion -- References -- Multi-class Detection and Tracking of Intracorporeal Suturing Instruments in an FLS Laparoscopic Box Trainer Using Scaled-YOLOv4 -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Scaled-YOLOv4 Architecture -- 3.2 Measurement Algorithm -- 4 Experimental Setup -- 4.1 Dataset -- 4.2 Software Implementation -- 5 Results -- 6 Discussion -- 7 Conclusion and Future Work -- References -- Deep Learning II -- A New Approach to Visual Classification Using Concatenated Deep Learning for Multimode Fusion of EEG and Image Data -- 1 Introduction -- 2 Related Work -- 3 Datasets -- 3.1 EEG-ImageNet. 3.2 Visual Stimuli EEG Dataset: Real-World 3D Objects and Corresponding 2D Image Stimuli -- 4 Data Encoding and Processing -- 4.1 Classical Feature Extraction for EEG Data -- 4.2 Classical Feature Extraction for Image Data -- 4.3 Principal Component Analysis (PCA) Encoding -- 4.4 Grayscale-Image Encoding for EEG Data -- 5 Methods and Model Implementation -- 5.1 Conventional Machine Learning Classifiers -- 5.2 LSTM-Based EEG Model (LEM) ch17ourvisclasspaper -- 5.3 CNN-Based Image Model (CIM) ch17ourvisclasspaper -- 5.4 Grayscale-Image Encoded EEG Model (GEM) -- 5.5 Concatenation-Based Models ch17ourvisclasspaper -- 6 Experiments and Results -- 6.1 Baseline Visual Classification for EEG and Image Data -- 6.2 Classification Using Deep Learning Models -- 6.3 Hemispherical Brain Region Classification Comparison -- 6.4 Visual Classification Using Multimodal Deep Learning -- 6.5 Visual Classification for Real Object Versus Image as Stimuli -- 7 Discussion -- 8 Conclusion -- References -- Deep Learning-Based Classification of Plant Xylem Tissue from Light Micrographs -- 1 Introduction -- 2 Related Works -- 3 Dataset and Problem Definition -- 4 Methodology -- 4.1 Data Augmentation and Pre-processing -- 4.2 Cascading-Like Model -- 4.3 Global Contextualization Approach -- 5 Experiments and Results -- 5.1 Model Evaluation Metric -- 5.2 Baseline Results -- 5.3 Results -- 6 Discussion -- 7 Conclusion -- References -- VampNet: Unsupervised Vampirizing of Convolutional Networks -- 1 Introduction -- 2 Related Work -- 2.1 Correlation-Based Feature Map Analysis -- 2.2 Multitask Neural Networks -- 2.3 Networks Merging -- 3 Method -- 3.1 Linearity Between Feature Maps -- 3.2 Ranking Linearity Between Features -- 3.3 Vampirizing a Feature Using a Convolutional Operator -- 3.4 Vampirizing a Layer -- 3.5 Automatic Selection of the Layer to Be Replaced -- 4 Experiments. 4.1 Setup. |
Record Nr. | UNISA-996503470603316 |
Cham, Switzerland : , : Springer, , [2022] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in visual computing . Part I : 16th International Symposium, ISVC 2021, Virtual event, October 4-6, 2021, Proceedings / / George Bebis [and eight others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (635 pages) |
Disciplina | 006.6 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computer graphics |
ISBN | 3-030-90439-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910512174103321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in visual computing . Part 2 : 16th International Symposium, ISVC 2021, Virtual event, October 4-6, 2021, Proceedings / / George Bebis [and eight others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (555 pages) |
Disciplina | 006.6 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computer graphics |
ISBN | 3-030-90436-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910512174203321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in visual computing . Part I : 16th International Symposium, ISVC 2021, Virtual event, October 4-6, 2021, Proceedings / / George Bebis [and eight others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (635 pages) |
Disciplina | 006.6 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computer graphics |
ISBN | 3-030-90439-3 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996464448703316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in visual computing . Part 2 : 16th International Symposium, ISVC 2021, Virtual event, October 4-6, 2021, Proceedings / / George Bebis [and eight others], editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (555 pages) |
Disciplina | 006.6 |
Collana | Lecture Notes in Computer Science |
Soggetto topico | Computer graphics |
ISBN | 3-030-90436-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNISA-996464446803316 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. di Salerno | ||
|
Advances in visual computing : 15th international symposium, ISVC 2020, San Diego, CA, USA, October 5-7, 2020, proceedings, part II / / George Bebis [and eight others] |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
Descrizione fisica | 1 online resource (XXVIII, 777 p. 351 illus., 296 illus. in color.) |
Disciplina | 006.4 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Artificial intelligence
Image Processing and Computer Vision Pattern perception |
ISBN | 3-030-64559-2 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Object Recognition/Detection/Categorization -- Few-shot Image Recognition with Manifolds -- A scale-aware YOLO model for pedestrian detection -- Image categorization using Agglomerative clustering based smoothed Dirichlet mixtures -- SAT-CNN: A Small Neural Network for Object Recognition from Satellite Imagery -- Domain Adaptive Transfer Learning on Visual Attention Aware Data Augmentation for Fine-grained Visual Categorization -- 3D Reconstruction -- A Light-Weight Monocular Depth Estimation With Edge-Guided Occlusion Fading Reduction -- Iterative Closest Point with Minimal Free Space Constraints -- Minimal Free Space Constraints for Implicit Distance Bounds -- Medical Image Analysis -- Fetal Brain Segmentation using Convolutional Neural Networks with Fusion Strategies -- Fundus2Angio: A Novel Conditional GAN Architecture for Generating Fluorescein Angiography Images from Retinal Fundus Photography -- Multiscale Detection of Cancerous Tissue in High Resolution Slide Scans -- DeepTKAClassi er: Brand Classification of Total Knee Arthroplasty Implants using Explainable Deep Convolutional Neural Networks -- Multi-modal Image Fusion based on Weight Local Features and Novel Sum-Modified-Laplacian in Non-Subsampled Shearlet Transform Domain -- Robust Prostate Cancer Classification with Siamese Neural Networks -- Vision for Robotics -- Simple Camera-to-2D-LiDAR Calibration Method for General Use -- SalsaNext: Fast, Uncertainty-aware Semantic Segmentation of LiDAR Point Clouds -- Mobile Manipulator Robot Visual Servoing and Guidance for Dynamic Target Grasping -- Statistical Pattern Recognition -- Interpreting Galaxy Deblender GAN from the Discriminator's Perspective -- Variational Bayesian Sequence to Sequence Networks for Memory-Efficient Sign Language Translation -- A Gaussian Process Upsampling Model for Improvements in Optical Character Recognition -- Posters -- Video based fire detection using Xception and ConvLSTM -- Highway Traffic Classification for the Perception Level of Situation Awareness -- 3D-CNN for Facial Emotion Recognition in Videos -- Reducing Triangle Inequality Violations with Deep Learning and Its Application to Image Retrieval -- A Driver Guidance System to Support the Stationary Wireless Charging of Electric Vehicles -- An Efficient Tiny Feature Map Network For Real-Time Semantic Segmentation -- A Modified Syn2Real Network for Nighttime Rainy Image Restoration -- Unsupervised domain adaptation for person re-identification with few and unlabeled target data -- How Does Computer Animation Affect Our Perception Of Emotions in Video Summarization? -- Where's Wally: A Gigapixel Image Study for Face Recognition in Crowds -- Optical Flow Based Background Subtraction with a Moving Camera: Application to Autonomous Driving -- Deep Facial Expression Recognition with Occlusion Regularization -- Semantic Segmentation with Peripheral Vision -- Generator From Edges: Reconstruction of Facial Images -- CD2 : Combined Distances of Contrast Distributions for Image Quality Analysis -- Real-Time Person Tracking and Association on Doorbell Cameras -- MySnapFoodLog: Culturally Sensitive FoodPhoto-Logging App for Dietary BiculturalismStudies -- Hand Gesture Recognition Based on the Fusion of Visual and Touch Sensing Data -- Gastrointestinal Tract Anomaly Detection from Endoscopic Videos using Object Detection Approach -- A multimodal high level video segmentation for content targeted online advertising -- AI Playground: Unreal Engine-based Data Ablation Tool for Deep Learning -- Homework Helper: Providing Valuable Feedback on Math Mistakes -- Interface Design for HCI Classroom: From Learners' Perspective -- Pre-trained Convolutional Neural Network for the Diagnosis of Tuberculosis -- Near-Optimal Concentric Circles Layout -- Facial Expression Recognition and Ordinal Intensity Estimation: A Multilabel Learning Approach -- Prostate MRI Registration Using Siamese Metric Learning -- Unsupervised Anomaly Detection of the First Person in Gait from an Egocentric Camera -- Emotion Categorization from Video-frame Images using a Novel Sequential Voting Technique -- Systematic Optimization of Image Processing Pipelines Using GPUs -- A Hybrid Approach for Improved Image Similarity Using Semantic Segmentation -- Automated classification of Parkinson's Disease using Diffusion Tensor Imaging Data -- Nonlocal Adaptive Biharmonic Regularizer for Image Restoration -- A Robust Approach to Plagiarism Detection in Handwritten Documents -- Optical Coherence Tomography Latent Fingerprint Image Denoising -- CNN, Segmentation or Semantic Embeddings: Evaluating Scene Context for Trajectory Prediction -- Automatic Extraction of Joint Orientations in Rock Mass using PointNet and DBSCAN -- Feature Map Retargeting to Classify Biomedical Journal Figures -- Automatic 3D Object Detection from RGB-D data using PU-GAN -- Nodule Generation of Lung CT Images using a 3D Convolutional LSTM Network -- Conditional GAN for Prediction of Glaucoma Progression with Macular Optical Coherence Tomography. |
Record Nr. | UNINA-9910447250403321 |
Cham, Switzerland : , : Springer, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Advances in visual computing : 15th international symposium, ISVC 2020, San Diego, CA, USA, October 5-7, 2020, proceedings, part I / / George Bebis [and eight others] |
Edizione | [1st ed. 2020.] |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2020] |
Descrizione fisica | 1 online resource (XXXVI, 745 p. 45 illus., 1 illus. in color.) |
Disciplina | 006.4 |
Collana | Image Processing, Computer Vision, Pattern Recognition, and Graphics |
Soggetto topico |
Image Processing and Computer Vision
Artificial intelligence Pattern perception |
ISBN | 3-030-64556-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Deep Learning -- Regularization and Sparsity for Adversarial Robustness and Stable Attribution -- Self-Competitive Neural Networks -- A Novel Contractive GAN Model for a Unified Approach Towards Blind Quality Assessment of Images from Heterogeneous Sources -- Nonconvex Regularization for Network Slimming: Compressing CNNs Even More -- Biologically Inspired Sleep Algorithm for VariationalAuto-Encoders -- A Deep Genetic Programming based Methodology for Art Media Classification Robust to Adversarial Perturbations -- rcGAN: Learning a generative model for arbitrary size image generation -- Sketch-Inspector: a Deep Mixture Model for High-Quality Sketch Generation of Cats -- Depthwise Separable Convolutions and Variational Dropout within the context of YOLOv3 -- Uncertainty Estimates in Deep Generative Models using Gaussian Processes -- Segmentation -- Towards Optimal Ship Navigation Using Image Processing -- Overscan Detection in Digitized Analog Films by Precise Sprocket Hole Segmentation -- Pixel-level Corrosion Detection on Metal Constructions by Fusion of Deep Learning Semantic and Contour Segmentation -- CSC-GAN: Cycle and semantic consistency for dataset augmentation -- Improvements on the Superpixel Hierarchy Algorithm with Applications to Image Segmentation and Saliency Detection -- Visualization -- Referenced Based Color Transfer for Medical Volume Rendering -- An Empirical Methodological Study of Evaluation Methods Applied to Educational Timetabling Visualizations -- Real-Time Contrast Enhancement for 3DMedical Images using Histogram Equalization -- Flow Map Processing by Space-Time Deformation -- GenExplorer: Visualizing and Comparing Gene Expression Levels via Differential Charts -- Video Analysis and Event Recognition -- An Event-Based Hierarchical Method for Customer Activity Recognition in Retail Stores -- Fully Autonomous UAV-based Action Recognition System Using Aerial Imagery -- Hierarchical Action Classification with Network Pruning -- An Approach Towards Action Recognition using Part Based Hierarchical Fusion -- ST: Computational Bioimaging -- Ensemble Convolutional Neural Networks for the Detection of Microscopic Fusarium Oxysporum -- Offline versus Online Triplet Mining based on Extreme Distances of Histopathology Patches -- Multi-Label Classification of Panoramic Radiographic Images using a Convolutional Neural Network -- Ink Marker Segmentation in Histopathology Images Using Deep Learning -- P-FideNet: Plasmodium Falciparum Identification Neural Network -- Applications -- Lightless Fields: Enhancement and Denoising of Light-defficient Light Fields -- FA3D: Fast and Accurate 3D Object Detection -- Generalized Inverted Dirichlet Optimal predictor for Image inpainting -- BVNet: A 3D End-to-end Model Based on Point Cloud -- Evaluating Single Image Dehazing Methods Under Realistic Sunlight Haze -- Biometrics -- Deep Partial Occlusion Facial Expression Recognition via Improved CNN -- Towards an Effective Approach for Face Recognition with DCGANs Data Augmentation -- Controlled AutoEncoders to Generate Faces from Voices -- Gender and Age Estimation without Facial Information from Still Images -- Face Reenactment Based Facial Expression Recognition -- Motion and Tracking -- Coarse-to-Fine Object Tracking Using Deep Features and Correlation Filters -- Asynchronous Corner Tracking Algorithm based on Lifetime of Events for DAVIS Cameras -- TAGCN: Topology-Aware Graph Convolutional Network for Trajectory Prediction -- 3D articulated body model using anthropometric control points and an articulation video -- Body Motion Analysis for Golf Swing Evaluation -- Computer Graphics -- Simulation of High-Definition Pixel-Headlights -- ConcurrentHull: A Fast Parallel Computing Approach to the Convex Hull Problem -- A Data-Driven Creativity Measure for 3D Shapes -- Virtual Reality -- Walking in a Crowd Full of Virtual Characters: Effects of Virtual Character Appearance on Human Movement Behavior -- Improving Chinese Reading Comprehensions of Dyslexic Children via VR Reading -- Improving User Experience in Augmented Reality Mirrors with 3D Displays -- Passenger Anxiety about Virtual Driver Awareness During a Trip with a Virtual Autonomous Vehicle -- Investigating the Display Fidelity of Popular Head-Mounted Display Systems on Spatial Updating and Learning in VR -- ST: Computer Vision Advances in Geo-Spatial Applications and Remote Sensing -- Natural Disaster Building Damage Assessment Using a Two-Encoder U-Net -- Understanding Flooding Detection Using Overhead Imagery – Lessons Learned -- Hyperspectral Image Classification via Pyramid Graph Reasoning -- Semi-Supervised Fine-Tuning for Deep Learning Models in Remote Sensing Applications -- Scene Classification of Remote Sensing Images using convNet Features and Multi-grained Forest. |
Record Nr. | UNINA-9910447250503321 |
Cham, Switzerland : , : Springer, , [2020] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|