Mobile ad hoc networking : the cutting edge directions / / edited by Stefano Basagni, Marco Conti, Silvia Giordano, Ivan Stojmenovic |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2012] |
Descrizione fisica | 1 online resource (887 p.) |
Disciplina | 004.6 167 |
Collana | IEEE series on digital & mobile communication |
Soggetto topico |
Ad hoc networks (Computer networks)
Wireless LANs Mobile computing |
ISBN |
1-118-51127-1
1-299-24198-0 1-118-51124-7 1-118-51123-9 |
Classificazione | TEC041000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE xiii -- ACKNOWLEDGMENTS xv -- CONTRIBUTORS xvii -- PART I GENERAL ISSUES -- 1 Multihop Ad Hoc Networking: The Evolutionary Path 3 -- Marco Conti and Silvia Giordano -- 1.1 Introduction, 3 -- 1.2 MANET Research: Major Achievements and Lessons Learned, 5 -- 1.3 Multihop Ad Hoc Networks: From Theory to Reality, 16 -- 1.4 Summary and Conclusions, 25 -- 2 Enabling Technologies and Standards for Mobile Multihop Wireless Networking 34 -- Enzo Mingozzi and Claudio Cicconetti -- 2.1 Introduction, 35 -- 2.2 Broadband Wireless Access Technologies, 37 -- 2.3 Wireless Local Area Networks Technologies, 43 -- 2.4 Personal Area Networks Technologies, 53 -- 2.5 Mobility Support in Heterogeneous Scenarios, 65 -- 2.6 Conclusions, 67 -- 3 Application Scenarios 77 -- Ilias Leontiadis, Ettore Ferranti, Cecilia Mascolo, Liam McNamara, Bence Pasztor, Niki Trigoni, and Sonia Waharte -- 3.1 Introduction, 78 -- 3.2 Military Applications, 79 -- 3.3 Network Connectivity, 81 -- 3.4 Wireless Sensor Networks, 84 -- 3.5 Search and Rescue, 89 -- 3.6 Vehicular Networks, 93 -- 3.7 Personal Content Dissemination, 96 -- 3.8 Conclusions, 98 -- 4 Security in Wireless Ad Hoc Networks 106 -- Roberto Di Pietro and Josep Domingo-Ferrer -- 4.1 Introduction, 106 -- 4.2 Wireless Sensor Networks, 110 -- 4.3 Unattended WSN, 125 -- 4.4 Wireless Mesh Networks, 130 -- 4.5 Delay-Tolerant Networks, 134 -- 4.6 Vehicular Ad Hoc Networks (VANETs), 137 -- 4.7 Conclusions and Open Research Issues, 144 -- 5 Architectural Solutions for End-User Mobility 154 -- Salvatore Vanini and Anna Forster -- 5.1 Introduction, 154 -- 5.2 Mesh Networks, 155 -- 5.3 Wireless Sensor Networks, 182 -- 5.4 Conclusion, 188 -- 6 ExperimentalWork Versus Simulation in the Study of Mobile Ad Hoc Networks 191 -- Carlo Vallati, Victor Omwando, and Prasant Mohapatra -- 6.1 Introduction, 191 -- 6.2 Overview of Mobile Ad Hoc Network Simulation Tools and Experimental Platforms, 192 -- 6.3 Gap Between Simulations and Experiments: Issues and Factors, 199.
6.4 Good Simulations: Validation, Verification, and Calibration, 220 -- 6.5 Simulators and Testbeds: Future Prospects, 226 -- 6.6 Conclusion, 228 -- PART II MESH NETWORKING -- 7 Resource Optimization in Multiradio Multichannel Wireless Mesh Networks 241 -- Antonio Capone, Ilario Filippini, Stefano Gualandi, and Di Yuan -- 7.1 Introduction, 242 -- 7.2 Network and Interference Models, 244 -- 7.3 Maximum Link Activation Under the SINR Model, 245 -- 7.4 Optimal Link Scheduling, 247 -- 7.5 Joint Routing and Scheduling, 254 -- 7.6 Dealing with Channel Assignment and Directional Antennas, 257 -- 7.7 Cooperative Networking, 263 -- 7.8 Concluding Remarks and Future Issues, 269 -- 8 Quality of Service in Mesh Networks 275 -- Raffaele Bruno -- 8.1 Introduction, 275 -- 8.2 QoS Definition, 277 -- 8.3 A Taxonomy of Existing QoS Routing Approaches, 278 -- 8.4 Routing Protocols with Optimization-Based Path Selection, 280 -- 8.5 Routing Metrics for Minimum-Weight Path Selection, 291 -- 8.6 Feedback-Based Path Selection, 307 -- 8.7 Conclusions, 308 -- PART III OPPORTUNISTIC NETWORKING -- 9 Applications in Delay-Tolerant and Opportunistic Networks 317 -- Teemu KS arkkS ainen, Mikko Pitkanen, and JoergOtt -- 9.1 Application Scenarios, 318 -- 9.2 Challenges for Applications Over DTN, 322 -- 9.3 Critical Mechanisms for DTN Applications, 328 -- 9.4 DTN Applications (Case Studies), 336 -- 9.5 Conclusion: Rethinking Applications for DTNs, 357 -- 10 Mobility Models in Opportunistic Networks 360 -- Kyunghan Lee, Pan Hui, and Song Chong -- 10.1 Introduction, 360 -- 10.2 Contact-Based Measurement, Analysis, and Modeling, 361 -- 10.3 Trajectory Models, 376 -- 10.4 Implications for Network Protocol Design, 399 -- 10.5 New Paradigm: Delay-Resource Tradeoffs, 406 -- 11 Opportunistic Routing 419 -- Thrasyvoulos Spyropoulos and Andreea Picu -- 11.1 Introduction, 420 -- 11.2 Cornerstones of Opportunistic Networks, 422 -- 11.3 Dealing with Uncertainty: Redundancy-Based Routing, 428 -- 11.4 Capitalizing on Structure: Utility-Based Forwarding, 435. 11.5 Hybrid Solutions: Combining Redundancy and Utility, 444 -- 11.6 Conclusion, 447 -- 12 Data Dissemination in Opportunistic Networks 453 -- Chiara Boldrini and Andrea Passarella -- 12.1 Introduction, 454 -- 12.2 Initial Ideas: PodNet, 456 -- 12.3 Social-Aware Schemes, 460 -- 12.4 Publish/Subscribe Schemes, 464 -- 12.5 Global Optimization, 469 -- 12.6 Infrastructure-Based Approaches, 474 -- 12.7 Approaches Inspired by Unstructured p2p Systems, 478 -- 12.8 Further Readings, 482 -- 13 Task Farming in Crowd Computing 491 -- Derek G. Murray, Karthik Nilakant, J. Crowcroft, and E. Yoneki -- 13.1 Introduction, 491 -- 13.2 Ideal Parallelism Model, 494 -- 13.3 Task Farming, 498 -- 13.4 Socially Aware Task Farming, 500 -- 13.5 Related Work, 510 -- 13.6 Conclusions and Future Work, 510 -- PART IV VANET -- 14 A Taxonomy of Data Communication Protocols for Vehicular Ad Hoc Networks 517 -- Yousef-Awwad Daraghmi, Ivan Stojmenovic, and Chih-Wei Yi -- 14.1 Introduction, 517 -- 14.2 Taxonomy of VANET Communication Protocols, 520 -- 14.3 Reliability-Oriented Geocasting Protocols, 525 -- 14.4 Time-Critical Geocasting Protocols, 527 -- 14.5 Small-Scale Routing Protocols, 529 -- 14.6 Large-Scale Routing, 534 -- 14.7 Summary, 539 -- 14.8 Conclusion and Future Work, 539 -- 15 Mobility Models, Topology, and Simulations in VANET 545 -- Francisco J. Ros, Juan A. Martinez, and Pedro M. Ruiz -- 15.1 Introduction and Motivation, 545 -- 15.2 Mobility Models, 547 -- 15.3 Mobility Simulators, 551 -- 15.4 Integrated Simulators, 557 -- 15.5 Modeling Vehicular Communications, 560 -- 15.6 Analysis of Connectivity in Highways, 565 -- 15.7 Conclusion and Future Work, 572 -- 16 ExperimentalWork on VANET 577 -- Minglu Li and Hongzi Zhu -- 16.1 Introduction, 577 -- 16.2 MIT CarTel, 579 -- 16.3 UMass DieselNet, 581 -- 16.4 SJTU ShanghaiGrid, 584 -- 16.5 NCTU VANET Testbed, 587 -- 16.6 UCLA CVeT, 589 -- 16.7 GM DSRC Fleet, 590 -- 16.8 FleetNet Project, 591 -- 16.9 Network on Wheels (NOW) Project, 592. 16.10 Advanced Safety Vehicles (ASVs), 593 -- 16.11 Japan Automobile Research Institute (JARI), 594 -- 17 MAC Protocols for VANET 599 -- Mohammad S. Almalag, Michele C. Weigle, and Stephan Olariu -- 17.1 Introduction, 599 -- 17.2 MAC Metrics, 602 -- 17.3 IEEE Standards for MAC Protocols for VANETs, 602 -- 17.4 Alternate MAC Protocols for VANET, 606 -- 17.5 Conclusion, 616 -- 18 Cognitive Radio Vehicular Ad Hoc Networks: Design, Implementation, and Future Challenges 619 -- Marco Di Felice, Kaushik Roy Chowdhury, and Luciano Bononi -- 18.1 Introduction, 620 -- 18.2 Characteristics of Cognitive Radio Vehicular Networks, 622 -- 18.3 Applications of Cognitive Radio Vehicular Networks, 628 -- 18.4 CRV Network Architecture, 629 -- 18.5 Classification and Description of Existing Works on CRV Networks, 630 -- 18.6 Research Issues in CRVs, 636 -- 18.7 Conclusion, 640 -- 19 The Next Paradigm Shift: From Vehicular Networks to Vehicular Clouds 645 -- Stephan Olariu, Tihomir Hristov, and Gongjun Yan -- 19.1 By Way of Motivation, 646 -- 19.2 The Vehicular Model, 647 -- 19.3 Vehicular Networks, 649 -- 19.4 Cloud Computing, 650 -- 19.5 Vehicular Clouds, 652 -- 19.6 How are Vehicular Clouds Different?, 654 -- 19.7 Feasible Instances of Vehicular Clouds, 657 -- 19.8 More Application Scenarios, 660 -- 19.9 Security and Privacy in Vehicular Clouds, 666 -- 19.10 Key Management, 677 -- 19.11 Research Challenges, 680 -- 19.12 Architectures for Vehicular Clouds, 681 -- 19.13 Resource Aggregation in Vehicular Clouds, 683 -- 19.14 A Simulation Study of VC, 690 -- 19.15 Future Work, 691 -- 19.16 Where to From Here?, 693 -- PART V SENSOR NETWORKING -- 20 Wireless Sensor Networks with Energy Harvesting 703 -- Stefano Basagni, M. Yousof Naderi, Chiara Petrioli, and Dora Spenza -- 20.1 Introduction, 703 -- 20.2 Node Platforms, 704 -- 20.3 Techniques of Energy Harvesting, 709 -- 20.4 Prediction Models, 713 -- 20.5 Protocols for EHWSNs, 717 -- 21 Robot-AssistedWireless Sensor Networks: Recent Applications and Future Challenges 737 -- Rafael Falcon, Amiya Nayak, and Ivan Stojmenovic. 21.1 Introduction, 737 -- 21.2 Robot-Assisted Sensor Placement, 740 -- 21.3 Robot-Assisted Sensor Relocation, 751 -- 21.4 Robot-Assisted Sensor Maintenance, 762 -- 21.5 Future Challenges, 763 -- 22 Underwater Networks with Limited Mobility: Algorithms, Systems, and Experiments 769 -- Carrick Detweiler, Elizabeth Basha, Marek Doniec, and Daniela Rus -- 22.1 Introduction, 770 -- 22.2 Related Work, 772 -- 22.3 Decentralized Control Algorithm, 775 -- 22.4 General System Architecture and Design, 779 -- 22.5 Application-Specific Architecture and Design, 786 -- 22.6 Experiments and Results, 789 -- 22.7 Conclusions, 799 -- 23 Advances in Underwater Acoustic Networking 804 -- Tommaso Melodia, Hovannes Kulhandjian, Li-Chung Kuo, and Emrecan Demirors -- 23.1 Introduction, 805 -- 23.2 Communication Architecture, 806 -- 23.3 Basics of Underwater Communications, 807 -- 23.4 Physical Layer, 814 -- 23.5 Medium Access Control Layer, 822 -- 23.6 Network Layer, 829 -- 23.7 Cross-Layer Design, 833 -- 23.8 Experimental Platforms, 834 -- 23.9 UW-Buffalo: An Underwater Acoustic Testbed at the University at Buffalo, 842 -- 23.10 Conclusions, 842 -- References, 843 -- Index 853. |
Record Nr. | UNINA-9910141601603321 |
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2012] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Mobile ad hoc networking : the cutting edge directions / / edited by Stefano Basagni, Marco Conti, Silvia Giordano, Ivan Stojmenovic |
Edizione | [2nd ed.] |
Pubbl/distr/stampa | Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2012] |
Descrizione fisica | 1 online resource (887 p.) |
Disciplina | 004.6 167 |
Collana | IEEE series on digital & mobile communication |
Soggetto topico |
Ad hoc networks (Computer networks)
Wireless LANs Mobile computing |
ISBN |
1-118-51127-1
1-299-24198-0 1-118-51124-7 1-118-51123-9 |
Classificazione | TEC041000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
PREFACE xiii -- ACKNOWLEDGMENTS xv -- CONTRIBUTORS xvii -- PART I GENERAL ISSUES -- 1 Multihop Ad Hoc Networking: The Evolutionary Path 3 -- Marco Conti and Silvia Giordano -- 1.1 Introduction, 3 -- 1.2 MANET Research: Major Achievements and Lessons Learned, 5 -- 1.3 Multihop Ad Hoc Networks: From Theory to Reality, 16 -- 1.4 Summary and Conclusions, 25 -- 2 Enabling Technologies and Standards for Mobile Multihop Wireless Networking 34 -- Enzo Mingozzi and Claudio Cicconetti -- 2.1 Introduction, 35 -- 2.2 Broadband Wireless Access Technologies, 37 -- 2.3 Wireless Local Area Networks Technologies, 43 -- 2.4 Personal Area Networks Technologies, 53 -- 2.5 Mobility Support in Heterogeneous Scenarios, 65 -- 2.6 Conclusions, 67 -- 3 Application Scenarios 77 -- Ilias Leontiadis, Ettore Ferranti, Cecilia Mascolo, Liam McNamara, Bence Pasztor, Niki Trigoni, and Sonia Waharte -- 3.1 Introduction, 78 -- 3.2 Military Applications, 79 -- 3.3 Network Connectivity, 81 -- 3.4 Wireless Sensor Networks, 84 -- 3.5 Search and Rescue, 89 -- 3.6 Vehicular Networks, 93 -- 3.7 Personal Content Dissemination, 96 -- 3.8 Conclusions, 98 -- 4 Security in Wireless Ad Hoc Networks 106 -- Roberto Di Pietro and Josep Domingo-Ferrer -- 4.1 Introduction, 106 -- 4.2 Wireless Sensor Networks, 110 -- 4.3 Unattended WSN, 125 -- 4.4 Wireless Mesh Networks, 130 -- 4.5 Delay-Tolerant Networks, 134 -- 4.6 Vehicular Ad Hoc Networks (VANETs), 137 -- 4.7 Conclusions and Open Research Issues, 144 -- 5 Architectural Solutions for End-User Mobility 154 -- Salvatore Vanini and Anna Forster -- 5.1 Introduction, 154 -- 5.2 Mesh Networks, 155 -- 5.3 Wireless Sensor Networks, 182 -- 5.4 Conclusion, 188 -- 6 ExperimentalWork Versus Simulation in the Study of Mobile Ad Hoc Networks 191 -- Carlo Vallati, Victor Omwando, and Prasant Mohapatra -- 6.1 Introduction, 191 -- 6.2 Overview of Mobile Ad Hoc Network Simulation Tools and Experimental Platforms, 192 -- 6.3 Gap Between Simulations and Experiments: Issues and Factors, 199.
6.4 Good Simulations: Validation, Verification, and Calibration, 220 -- 6.5 Simulators and Testbeds: Future Prospects, 226 -- 6.6 Conclusion, 228 -- PART II MESH NETWORKING -- 7 Resource Optimization in Multiradio Multichannel Wireless Mesh Networks 241 -- Antonio Capone, Ilario Filippini, Stefano Gualandi, and Di Yuan -- 7.1 Introduction, 242 -- 7.2 Network and Interference Models, 244 -- 7.3 Maximum Link Activation Under the SINR Model, 245 -- 7.4 Optimal Link Scheduling, 247 -- 7.5 Joint Routing and Scheduling, 254 -- 7.6 Dealing with Channel Assignment and Directional Antennas, 257 -- 7.7 Cooperative Networking, 263 -- 7.8 Concluding Remarks and Future Issues, 269 -- 8 Quality of Service in Mesh Networks 275 -- Raffaele Bruno -- 8.1 Introduction, 275 -- 8.2 QoS Definition, 277 -- 8.3 A Taxonomy of Existing QoS Routing Approaches, 278 -- 8.4 Routing Protocols with Optimization-Based Path Selection, 280 -- 8.5 Routing Metrics for Minimum-Weight Path Selection, 291 -- 8.6 Feedback-Based Path Selection, 307 -- 8.7 Conclusions, 308 -- PART III OPPORTUNISTIC NETWORKING -- 9 Applications in Delay-Tolerant and Opportunistic Networks 317 -- Teemu KS arkkS ainen, Mikko Pitkanen, and JoergOtt -- 9.1 Application Scenarios, 318 -- 9.2 Challenges for Applications Over DTN, 322 -- 9.3 Critical Mechanisms for DTN Applications, 328 -- 9.4 DTN Applications (Case Studies), 336 -- 9.5 Conclusion: Rethinking Applications for DTNs, 357 -- 10 Mobility Models in Opportunistic Networks 360 -- Kyunghan Lee, Pan Hui, and Song Chong -- 10.1 Introduction, 360 -- 10.2 Contact-Based Measurement, Analysis, and Modeling, 361 -- 10.3 Trajectory Models, 376 -- 10.4 Implications for Network Protocol Design, 399 -- 10.5 New Paradigm: Delay-Resource Tradeoffs, 406 -- 11 Opportunistic Routing 419 -- Thrasyvoulos Spyropoulos and Andreea Picu -- 11.1 Introduction, 420 -- 11.2 Cornerstones of Opportunistic Networks, 422 -- 11.3 Dealing with Uncertainty: Redundancy-Based Routing, 428 -- 11.4 Capitalizing on Structure: Utility-Based Forwarding, 435. 11.5 Hybrid Solutions: Combining Redundancy and Utility, 444 -- 11.6 Conclusion, 447 -- 12 Data Dissemination in Opportunistic Networks 453 -- Chiara Boldrini and Andrea Passarella -- 12.1 Introduction, 454 -- 12.2 Initial Ideas: PodNet, 456 -- 12.3 Social-Aware Schemes, 460 -- 12.4 Publish/Subscribe Schemes, 464 -- 12.5 Global Optimization, 469 -- 12.6 Infrastructure-Based Approaches, 474 -- 12.7 Approaches Inspired by Unstructured p2p Systems, 478 -- 12.8 Further Readings, 482 -- 13 Task Farming in Crowd Computing 491 -- Derek G. Murray, Karthik Nilakant, J. Crowcroft, and E. Yoneki -- 13.1 Introduction, 491 -- 13.2 Ideal Parallelism Model, 494 -- 13.3 Task Farming, 498 -- 13.4 Socially Aware Task Farming, 500 -- 13.5 Related Work, 510 -- 13.6 Conclusions and Future Work, 510 -- PART IV VANET -- 14 A Taxonomy of Data Communication Protocols for Vehicular Ad Hoc Networks 517 -- Yousef-Awwad Daraghmi, Ivan Stojmenovic, and Chih-Wei Yi -- 14.1 Introduction, 517 -- 14.2 Taxonomy of VANET Communication Protocols, 520 -- 14.3 Reliability-Oriented Geocasting Protocols, 525 -- 14.4 Time-Critical Geocasting Protocols, 527 -- 14.5 Small-Scale Routing Protocols, 529 -- 14.6 Large-Scale Routing, 534 -- 14.7 Summary, 539 -- 14.8 Conclusion and Future Work, 539 -- 15 Mobility Models, Topology, and Simulations in VANET 545 -- Francisco J. Ros, Juan A. Martinez, and Pedro M. Ruiz -- 15.1 Introduction and Motivation, 545 -- 15.2 Mobility Models, 547 -- 15.3 Mobility Simulators, 551 -- 15.4 Integrated Simulators, 557 -- 15.5 Modeling Vehicular Communications, 560 -- 15.6 Analysis of Connectivity in Highways, 565 -- 15.7 Conclusion and Future Work, 572 -- 16 ExperimentalWork on VANET 577 -- Minglu Li and Hongzi Zhu -- 16.1 Introduction, 577 -- 16.2 MIT CarTel, 579 -- 16.3 UMass DieselNet, 581 -- 16.4 SJTU ShanghaiGrid, 584 -- 16.5 NCTU VANET Testbed, 587 -- 16.6 UCLA CVeT, 589 -- 16.7 GM DSRC Fleet, 590 -- 16.8 FleetNet Project, 591 -- 16.9 Network on Wheels (NOW) Project, 592. 16.10 Advanced Safety Vehicles (ASVs), 593 -- 16.11 Japan Automobile Research Institute (JARI), 594 -- 17 MAC Protocols for VANET 599 -- Mohammad S. Almalag, Michele C. Weigle, and Stephan Olariu -- 17.1 Introduction, 599 -- 17.2 MAC Metrics, 602 -- 17.3 IEEE Standards for MAC Protocols for VANETs, 602 -- 17.4 Alternate MAC Protocols for VANET, 606 -- 17.5 Conclusion, 616 -- 18 Cognitive Radio Vehicular Ad Hoc Networks: Design, Implementation, and Future Challenges 619 -- Marco Di Felice, Kaushik Roy Chowdhury, and Luciano Bononi -- 18.1 Introduction, 620 -- 18.2 Characteristics of Cognitive Radio Vehicular Networks, 622 -- 18.3 Applications of Cognitive Radio Vehicular Networks, 628 -- 18.4 CRV Network Architecture, 629 -- 18.5 Classification and Description of Existing Works on CRV Networks, 630 -- 18.6 Research Issues in CRVs, 636 -- 18.7 Conclusion, 640 -- 19 The Next Paradigm Shift: From Vehicular Networks to Vehicular Clouds 645 -- Stephan Olariu, Tihomir Hristov, and Gongjun Yan -- 19.1 By Way of Motivation, 646 -- 19.2 The Vehicular Model, 647 -- 19.3 Vehicular Networks, 649 -- 19.4 Cloud Computing, 650 -- 19.5 Vehicular Clouds, 652 -- 19.6 How are Vehicular Clouds Different?, 654 -- 19.7 Feasible Instances of Vehicular Clouds, 657 -- 19.8 More Application Scenarios, 660 -- 19.9 Security and Privacy in Vehicular Clouds, 666 -- 19.10 Key Management, 677 -- 19.11 Research Challenges, 680 -- 19.12 Architectures for Vehicular Clouds, 681 -- 19.13 Resource Aggregation in Vehicular Clouds, 683 -- 19.14 A Simulation Study of VC, 690 -- 19.15 Future Work, 691 -- 19.16 Where to From Here?, 693 -- PART V SENSOR NETWORKING -- 20 Wireless Sensor Networks with Energy Harvesting 703 -- Stefano Basagni, M. Yousof Naderi, Chiara Petrioli, and Dora Spenza -- 20.1 Introduction, 703 -- 20.2 Node Platforms, 704 -- 20.3 Techniques of Energy Harvesting, 709 -- 20.4 Prediction Models, 713 -- 20.5 Protocols for EHWSNs, 717 -- 21 Robot-AssistedWireless Sensor Networks: Recent Applications and Future Challenges 737 -- Rafael Falcon, Amiya Nayak, and Ivan Stojmenovic. 21.1 Introduction, 737 -- 21.2 Robot-Assisted Sensor Placement, 740 -- 21.3 Robot-Assisted Sensor Relocation, 751 -- 21.4 Robot-Assisted Sensor Maintenance, 762 -- 21.5 Future Challenges, 763 -- 22 Underwater Networks with Limited Mobility: Algorithms, Systems, and Experiments 769 -- Carrick Detweiler, Elizabeth Basha, Marek Doniec, and Daniela Rus -- 22.1 Introduction, 770 -- 22.2 Related Work, 772 -- 22.3 Decentralized Control Algorithm, 775 -- 22.4 General System Architecture and Design, 779 -- 22.5 Application-Specific Architecture and Design, 786 -- 22.6 Experiments and Results, 789 -- 22.7 Conclusions, 799 -- 23 Advances in Underwater Acoustic Networking 804 -- Tommaso Melodia, Hovannes Kulhandjian, Li-Chung Kuo, and Emrecan Demirors -- 23.1 Introduction, 805 -- 23.2 Communication Architecture, 806 -- 23.3 Basics of Underwater Communications, 807 -- 23.4 Physical Layer, 814 -- 23.5 Medium Access Control Layer, 822 -- 23.6 Network Layer, 829 -- 23.7 Cross-Layer Design, 833 -- 23.8 Experimental Platforms, 834 -- 23.9 UW-Buffalo: An Underwater Acoustic Testbed at the University at Buffalo, 842 -- 23.10 Conclusions, 842 -- References, 843 -- Index 853. |
Record Nr. | UNINA-9910830080303321 |
Hoboken, New Jersey : , : John Wiley & Sons Inc., , [2012] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|