top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Handbook of mathematical formulas / / by Hans-Jochen Bartsch ; translation by Herbert Liebscher
Handbook of mathematical formulas / / by Hans-Jochen Bartsch ; translation by Herbert Liebscher
Autore Bartsch Hans-Jochen
Pubbl/distr/stampa New York, New York ; ; London, [England] : , : Academic Press, , 1974
Descrizione fisica 1 online resource (529 p.)
Disciplina 510.212
510/.21/2
Soggetto topico Mathematics
ISBN 1-4832-6742-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Handbook of Mathematical Formulas; Copyright Page; PREFACE; Table of Contents; Chapter 0. Mathematical Signs and Symbols; 0.1. Mathematical signs; 0.2. Symbols used in the theory of sets; 0.3. Symbols of logic; Chapter 1. Arithmetic; 1.1. Set theory; 1.2. Real numbers; 1.3. Imaginary or complex numbers; 1.4. Proportions; 1.5. Logarithms; 1.6. Combinatoric analysis; 1.7. Per cent calculation, interest calculation; 1.8. Sequences and series; 1.9. Determinants; 1.10. Matrices; Chapter 2. Equations, functions, vectors; 2.1. Equations; 2.2. Inequalities; 2.3. Functions
2.4. Vector calculus2.5. Reflection in a circle, inversion; Chapter 3. Geometry; 3.1. General; 3.2. Planimetry; 3.3. Stereometry; 3.4. Goniometry, plane trigonometry, hyperbolic functions; 3.5. Spherical trigonometry; Chapter 4. Analytical geometry; 4.1. Analytical geometry of the plane; 4.2. Analytical geometry of space; Chapter 5. Differential calculus; 5.1. Limits; 5.2. Difference quotient, differential quotient, differential; 5.3. Rules for differentiation; 5.4. Derivatives of the elementary functions; 5.5. Differentiation of a vector function; 5.6. Graphical differentiation
5.7. Extrema of functions (maxima and minima)5.8. Mean-value theorems; 5.9. Indeterminate expressions; Chapter 6. Differential geometry; 6.1. Plane curves; 6.2. Space curves; 6.3. Curved surfaces; Chapter 7. Integral calculus; 7.1. Definition of the indefinite integral; 7.2. Basic integrals; 7.3. Rules of integration; 7.4. A few special integrals; 7.5. Definite integral; 7.6· Line integral; 7.7. Multiple integrals; Chapter 8. Differential equations; 8.1, General; 8.2. Ordinary differential equations of the first order; 8.3. Ordinary differential equations of the second order
8.4. Ordinary differential equations of the third order8.5. Integration of differential equations by power series; 8.6. Partial differential equations; Chapter 9. Infinite series, Fourier series, Fourier integral, Laplace transformation; 9.1. Infinite series; 9.2. General statements on Fourier series, Fourier integrals, and Laplace transforms; 9.3. Fourier series; 9.4. Fourier integral, example of calculation; 9.5. Laplace transforms; 9.6. Employment of Laplace transforms; solution of differential equations; 9.7. Table of correspondences of some rational Laplace integrals
Chapter 10. Theory of probability statistics; error calculation; mathematical analysis of observations; 10.1. Theory of probability; 10.2. Statistics; 10.3. Error calculations; 10.4. Calculus of observations; Chapter 11. Linear Optimization; 11.1. General; 11.2. Graphical procedure; 11.3. Simplex procedure (simplex algorithm); 11.4. Simplex table; Chapter 12. Algebra of logic (Boolean algebra); 12.1. General; 12.2. Arithmetical laws, arithmetical rules; 12.3. Further possibilities of interconnecting two input variables (lexigraphic order); 12.4. Normal forms; 12.5. Karnaugh tables; APPENDIX
Index
Record Nr. UNINA-9910786640703321
Bartsch Hans-Jochen  
New York, New York ; ; London, [England] : , : Academic Press, , 1974
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Handbook of mathematical formulas / / by Hans-Jochen Bartsch ; translation by Herbert Liebscher
Handbook of mathematical formulas / / by Hans-Jochen Bartsch ; translation by Herbert Liebscher
Autore Bartsch Hans-Jochen
Pubbl/distr/stampa New York, New York ; ; London, [England] : , : Academic Press, , 1974
Descrizione fisica 1 online resource (529 p.)
Disciplina 510.212
510/.21/2
Soggetto topico Mathematics
ISBN 1-4832-6742-3
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Front Cover; Handbook of Mathematical Formulas; Copyright Page; PREFACE; Table of Contents; Chapter 0. Mathematical Signs and Symbols; 0.1. Mathematical signs; 0.2. Symbols used in the theory of sets; 0.3. Symbols of logic; Chapter 1. Arithmetic; 1.1. Set theory; 1.2. Real numbers; 1.3. Imaginary or complex numbers; 1.4. Proportions; 1.5. Logarithms; 1.6. Combinatoric analysis; 1.7. Per cent calculation, interest calculation; 1.8. Sequences and series; 1.9. Determinants; 1.10. Matrices; Chapter 2. Equations, functions, vectors; 2.1. Equations; 2.2. Inequalities; 2.3. Functions
2.4. Vector calculus2.5. Reflection in a circle, inversion; Chapter 3. Geometry; 3.1. General; 3.2. Planimetry; 3.3. Stereometry; 3.4. Goniometry, plane trigonometry, hyperbolic functions; 3.5. Spherical trigonometry; Chapter 4. Analytical geometry; 4.1. Analytical geometry of the plane; 4.2. Analytical geometry of space; Chapter 5. Differential calculus; 5.1. Limits; 5.2. Difference quotient, differential quotient, differential; 5.3. Rules for differentiation; 5.4. Derivatives of the elementary functions; 5.5. Differentiation of a vector function; 5.6. Graphical differentiation
5.7. Extrema of functions (maxima and minima)5.8. Mean-value theorems; 5.9. Indeterminate expressions; Chapter 6. Differential geometry; 6.1. Plane curves; 6.2. Space curves; 6.3. Curved surfaces; Chapter 7. Integral calculus; 7.1. Definition of the indefinite integral; 7.2. Basic integrals; 7.3. Rules of integration; 7.4. A few special integrals; 7.5. Definite integral; 7.6· Line integral; 7.7. Multiple integrals; Chapter 8. Differential equations; 8.1, General; 8.2. Ordinary differential equations of the first order; 8.3. Ordinary differential equations of the second order
8.4. Ordinary differential equations of the third order8.5. Integration of differential equations by power series; 8.6. Partial differential equations; Chapter 9. Infinite series, Fourier series, Fourier integral, Laplace transformation; 9.1. Infinite series; 9.2. General statements on Fourier series, Fourier integrals, and Laplace transforms; 9.3. Fourier series; 9.4. Fourier integral, example of calculation; 9.5. Laplace transforms; 9.6. Employment of Laplace transforms; solution of differential equations; 9.7. Table of correspondences of some rational Laplace integrals
Chapter 10. Theory of probability statistics; error calculation; mathematical analysis of observations; 10.1. Theory of probability; 10.2. Statistics; 10.3. Error calculations; 10.4. Calculus of observations; Chapter 11. Linear Optimization; 11.1. General; 11.2. Graphical procedure; 11.3. Simplex procedure (simplex algorithm); 11.4. Simplex table; Chapter 12. Algebra of logic (Boolean algebra); 12.1. General; 12.2. Arithmetical laws, arithmetical rules; 12.3. Further possibilities of interconnecting two input variables (lexigraphic order); 12.4. Normal forms; 12.5. Karnaugh tables; APPENDIX
Index
Record Nr. UNINA-9910806170903321
Bartsch Hans-Jochen  
New York, New York ; ; London, [England] : , : Academic Press, , 1974
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui