top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Federated learning : a comprehensive overview of methods and applications / / Heiko Ludwig, Nathalie Baracaldo (editors)
Federated learning : a comprehensive overview of methods and applications / / Heiko Ludwig, Nathalie Baracaldo (editors)
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (vi, 534 pages) : illustrations
Disciplina 006.31
Soggetto topico Machine learning
ISBN 3-030-96896-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNISA-996483164203316
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Federated Learning : A Comprehensive Overview of Methods and Applications / / edited by Heiko Ludwig, Nathalie Baracaldo
Federated Learning : A Comprehensive Overview of Methods and Applications / / edited by Heiko Ludwig, Nathalie Baracaldo
Edizione [1st ed. 2022.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Descrizione fisica 1 online resource (vi, 534 pages) : illustrations
Disciplina 006.31
Soggetto topico Artificial intelligence
Machine learning
Artificial Intelligence
Machine Learning
Aprenentatge automàtic
Soggetto genere / forma Llibres electrònics
ISBN 3-030-96896-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction to Federated Learning -- Tree-Based Models for Federated Learning Systems -- Semantic Vectorization: Text and Graph-Based Models -- Personalization in Federated Learning -- Personalized, Robust Federated Learning with Fed+ -- Communication-Efficient Distributed Optimization Algorithms -- Communication-Efficient Model Fusion -- Federated Learning and Fairness -- Introduction to Federated Learning Systems -- Local Training and Scalability of Federated Learning Systems -- Straggler Management -- Systems Bias in Federated Learning -- Protecting Against Data Leakage in Federated Learning: What Approach Should You Choose? -- Private Parameter Aggregation for Federated Learning -- Data Leakage in Federated Learning -- Security and Robustness in Federated Machine Learning -- Dealing with Byzantine Threats to Neural Networks -- Privacy-Preserving Vertical Federated Learning -- Split Learning: A Resource Efficient Model & Data Parallel Approach for Distributed Deep Learning -- Federated Learning for Collaborative Financial Crimes Detection -- Federated Reinforcement Learning for Portfolio Management -- Application of Federated Learning in Medical Imaging -- Advancing Healthcare Solutions with Federated Learning -- A Privacy-preserving Product Recommender System -- Application of Federated Learning in Telecommunications and Edge Computing.
Record Nr. UNINA-9910584601303321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2022
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui