top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Materials Informatics I : Methods / / edited by Kunal Roy, Arkaprava Banerjee
Materials Informatics I : Methods / / edited by Kunal Roy, Arkaprava Banerjee
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVII, 288 p. 66 illus., 53 illus. in color.)
Disciplina 542.85
Collana Challenges and Advances in Computational Chemistry and Physics
Soggetto topico Cheminformatics
Materials
Chemistry
Computer simulation
Machine learning
Artificial intelligence
Computational Design Of Materials
Machine Learning
Artificial Intelligence
ISBN 3-031-78736-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1. Introduction -- Introduction to Materials Informatics -- Introduction to Cheminformatics for Predictive Modeling -- Introduction to machine learning for predictive modeling of organic materials -- Quantitative Structure-Property Relationships (QSPR) for Materials Science -- Part 2. Methods and Tools -- Quantitative Structure-Property Relationships (QSPR) and Machine Learning (ML) Models for Materials Science -- Optimising Materials Properties with Minimal Data: Lessons from Vanadium Catalyst Modelling -- In silico QSPR studies based on CDFT and IT descriptors -- Applications of quantitative read-across structure-property relationship (q-RASPR) modeling in the field of materials science -- Machine Learning algorithms for applications in Materials Science I -- Machine Learning algorithms for applications in Materials Science II -- Structure-property modeling of quantum-theoretic properties of benzenoid hydrocarbons by means of connection-related graphical descriptors -- Machine learning tools and Web services for Materials Science modelling.
Record Nr. UNINA-9910993940403321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials Informatics II : Software Tools and Databases / / edited by Kunal Roy, Arkaprava Banerjee
Materials Informatics II : Software Tools and Databases / / edited by Kunal Roy, Arkaprava Banerjee
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (XVI, 297 p. 102 illus., 95 illus. in color.)
Disciplina 542.85
Collana Challenges and Advances in Computational Chemistry and Physics
Soggetto topico Cheminformatics
Materials
Chemistry
Computer simulation
Machine learning
Artificial intelligence
Computational Design Of Materials
Machine Learning
Artificial Intelligence
ISBN 3-031-78728-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1. Introduction -- Introduction to Machine Learning for Predictive Modeling I -- Introduction to Machine Learning for Materials Property Modeling -- Part 2. Cheminformatic and Machine Learning Models for Nanomaterials -- Machine learning models to study electronic properties of metal nanoclusters -- Applications of Machine Learning Predictive Modeling for Carbon Quantum Dots -- Assessing the toxicity of quantum dots in healthy and tumoral cells with ProtoNANO, a platform of nano-QSAR models to predict the toxicity of inorganic nanomaterials -- Applications of predictive modeling for fullerenes -- Computational Analysis of Perovskite Materials AlXY3 (X = Cu, Mn; Y = Br, Cl, F) invoking the DFT Method -- Applications of predictive modeling for dye-sensitized solar cells (DSSCs) -- Introduction to multiscale modeling for One Health approaches -- DIAGONAL Decision Support System (DSS) for Advanced Nanomaterial Risk Management powered by Enalos Cloud Platform -- Part 3. Software Tools and Databases for Applications in Materials Science -- Machine Learning algorithms, tools, and databases for applications in Materials Science -- Machine Learning-Driven Web Tools for Predicting Properties of Materials and Molecules.
Record Nr. UNINA-9910987695603321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials Informatics III : Polymers, Solvents and Energetic Materials / / edited by Kunal Roy, Arkaprava Banerjee
Materials Informatics III : Polymers, Solvents and Energetic Materials / / edited by Kunal Roy, Arkaprava Banerjee
Autore Roy Kunal
Edizione [1st ed. 2025.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Descrizione fisica 1 online resource (550 pages)
Disciplina 542.85
Altri autori (Persone) BanerjeeArkaprava
Collana Challenges and Advances in Computational Chemistry and Physics
Soggetto topico Cheminformatics
Machine learning
Materials
Catalysis
Force and energy
Materials science - Data processing
Nanochemistry
Machine Learning
Materials for Energy and Catalysis
Computational Materials Science
ISBN 9783031787249
9783031787232
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Part 1. Introduction -- Introduction to Machine Learning for Predictive Modeling II -- Introduction to predicting properties of organic materials -- Part 2. Cheminformatic and Machine Learning Models for Polymers -- Machine Learning Applications in Polymer Informatics – An Overview -- Applications of predictive modeling for selected properties of polymers -- Polymer Property Prediction using Machine Learning -- Applications of predictive modeling for polymers -- Part 3. Cheminformatic and Machine Learning Models for Solvents -- Applications of predictive QSPR modeling for deep eutectic solvents -- Applications of predictive modeling for various properties of ionic liquids -- Part 4. Cheminformatic and Machine Learning Models for Energetic Materials -- Improving Safety with Molecular-Scale Computational Approaches for Energetic and Reactive Materials -- Predictive modeling for energetic materials -- Modeling the performance of energetic materials -- Applications of predictive modeling for energetic materials.
Record Nr. UNINA-9910984592403321
Roy Kunal  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2025
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
q-RASAR : A Path to Predictive Cheminformatics / / by Kunal Roy, Arkaprava Banerjee
q-RASAR : A Path to Predictive Cheminformatics / / by Kunal Roy, Arkaprava Banerjee
Autore Roy Kunal <1971->
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (99 pages)
Disciplina 542.85
Collana SpringerBriefs in Molecular Science
Soggetto topico Chemistry - Data processing
Quantum theory
Computer simulation
Molecules - Models
Computational Chemistry
Quantum Simulations
Molecular Modelling
ISBN 3-031-52057-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Chemical Information and Molecular Similarity -- Read-across and Quantitative Structure-activity Relationships (QSAR) for Making Predictions and Data Gap-Filling -- Quantitative Read-Across (q-RA) and Quantitative Read-Across Structure-Activity Relationships (q-RASAR) – Genesis and Model Development -- Tools, Applications, and Case Studies (q-RA and q-RASAR) -- Future Prospects.
Record Nr. UNINA-9910806198703321
Roy Kunal <1971->  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui