AI-Powered IoT in the Energy Industry : Digital Technology and Sustainable Energy Systems / / edited by S. Vijayalakshmi, Savita ., Balamurugan Balusamy, Rajesh Kumar Dhanaraj |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (318 pages) |
Disciplina | 004.678 |
Collana | Power Systems |
Soggetto topico |
Electric power distribution
Renewable energy sources Cooperating objects (Computer systems) Electric power production Energy Grids and Networks Renewable Energy Cyber-Physical Systems Electrical Power Engineering |
ISBN |
9783031150449
9783031150432 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | AI and ML Towards Sustainable Solar Energy -- AI and Intermittency Management of Renewable Energy -- AI Impact on Energy and Utilities -- Energy Intelligence – The Smart Grid Perspective -- IoT Towards Leveraging Renewable Energy -- IoT Contribution in Construct of Green Energy -- IoT, Smart Grids, and Big Data – Renewable Energy Insights -- IoT Infrastructure to Energize Electromobility -- Building Sustainable Charging Infrastructure – Smart Solutions -- Biomass Renewable Energy: Introduction and Application of AI and IoT -- Modernization of Rural Electric Infrastructure -- AI and IoT in Improving Resilience of Smart Energy Infrastructure -- Empowering Renewable Energy Using Internet of Things -- Role of Artificial Intelligence in Renewable Energy -- IoT and Sustainable Energy System: Risk and Opportunity -- Powering the Geothermal Energy with AI, IoT, and ML. |
Record Nr. | UNINA-9910686478203321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial Intelligence for Autonomous Vehicles : The Future of Driverless Technology |
Autore | Rajendran Sathiyaraj |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (268 pages) |
Disciplina | 629.2/046028563 |
Altri autori (Persone) |
SabharwalMunish
HuYu-Chen BalusamyBalamurugan |
Collana | Advances in Data Engineering and Machine Learning Series |
Soggetto topico | Automated vehicles - Technological innovations |
ISBN |
9781119847656
1119847656 9781119847649 1119847648 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Artificial Intelligence in Autonomous Vehicles-A Survey of Trends and Challenges -- 1.1 Introduction -- 1.2 Research Trends of AI for AV -- 1.3 AV-Pipeline Activities -- 1.3.1 Vehicle Detection -- 1.3.2 Rear-End Collision Avoidance -- 1.3.3 Traffic Signal and Sign Recognition -- 1.3.4 Lane Detection and Tracking -- 1.3.5 Pedestrian Detection -- 1.4 Datasets in the Literature of Autonomous Vehicles -- 1.4.1 Stereo and 3D Reconstruction -- 1.4.2 Optical Flow -- 1.4.3 Recognition and Segmentation of Objects -- 1.4.4 Tracking Datasets -- 1.4.5 Datasets for Aerial Images -- 1.4.6 Sensor Synchronization Datasets -- 1.5 Current Industry Standards in AV -- 1.6 Challenges and Opportunities in AV -- 1.6.1 Cost -- 1.6.2 Security Concerns -- 1.6.3 Standards and Regulations -- 1.7 Conclusion -- References -- Chapter 2 Age of Computational AI for Autonomous Vehicles -- 2.1 Introduction -- 2.1.1 Autonomous Vehicles -- 2.1.2 AI in Autonomous Vehicles -- 2.1.2.1 Functioning of AI in Autonomous Vehicles -- 2.2 Autonomy -- 2.2.1 Autonomy Phases -- 2.2.2 Learning Methodologies for Incessant Learning in Real-Life Autonomy Systems -- 2.2.2.1 Supervised Learning -- 2.2.2.2 Unsupervised Learning -- 2.2.2.3 Reinforcement Learning -- 2.2.3 Advancements in Intelligent Vehicles -- 2.2.3.1 Integration of Technologies -- 2.2.3.2 Earlier Application of AI in Automated Driving -- 2.3 Classification of Technological Advances in Vehicle Technology -- 2.4 Vehicle Architecture Adaptation -- 2.5 Future Directions of Autonomous Driving -- 2.6 Conclusion -- References -- Chapter 3 State of the Art of Artificial Intelligence Approaches Toward Driverless Technology -- 3.1 Introduction -- 3.2 Role of AI in Driverless Cars -- 3.2.1 What is Artificial Intelligence? -- 3.2.2 What are Autonomous Vehicles?.
3.2.3 History of Artificial Intelligence in Driverless Cars -- 3.2.4 Advancements Over the Years -- 3.2.5 Driverless Cars and the Technology they are Built Upon -- 3.2.6 Advancement of Algorithms -- 3.2.7 Case Study on Tesla -- 3.3 Conclusion -- References -- Chapter 4 A Survey on Architecture of Autonomous Vehicles -- 4.1 Introduction -- 4.1.1 What is Artificial Intelligence? -- 4.1.2 What are Autonomous Vehicles? -- 4.2 A Study on Technologies Used in AV -- 4.2.1 Artificial Vision -- 4.2.2 Varying Light and Visibility Conditions -- 4.2.3 Scenes with a High Dynamic Range (HDR) -- 4.2.3.1 3 Dimensional Technology -- 4.2.3.2 Emerging Vision Technologies -- 4.2.4 Radar -- 4.2.4.1 Emerging Radar Technologies -- 4.2.5 LiDAR -- 4.2.5.1 Emerging LiDAR Technologies -- 4.3 Analysis on the Architecture of Autonomous Vehicles -- 4.3.1 Hardware Architecture -- 4.3.2 Software Architecture -- 4.4 Analysis on One of the Proposed Architectures -- 4.5 Functional Architecture of Autonomous Vehicles -- 4.6 Challenges in Building the Architecture of Autonomous Vehicles -- 4.6.1 Road Condition -- 4.6.2 Weather Condition -- 4.6.3 Traffic Condition -- 4.6.4 Accident Responsibility -- 4.6.5 Radar Interference -- 4.7 Advantages of Autonomous Vehicles -- 4.8 Use Cases for Autonomous Vehicle Technology -- 4.8.1 Five Use Cases -- 4.9 Future Aspects of Autonomous Vehicles -- 4.9.1 Levels of Vehicle Autonomy -- 4.9.2 Safer Mobility Technology -- 4.9.3 Industry Collaboration and Policy Matters -- 4.10 Summary -- References -- Chapter 5 Autonomous Car Driver Assistance System -- 5.1 Introduction -- 5.1.1 Traffic Video Surveillance -- 5.1.2 Need for the Research Work -- 5.2 Related Work -- 5.3 Methodology -- 5.3.1 Intelligent Driver Assistance System -- 5.3.2 Traffic Police Hand Gesture Region Identification -- 5.3.3 Vehicle Brake and Indicator Light Identification. 5.4 Results and Analysis -- 5.5 Conclusion -- References -- Chapter 6 AI-Powered Drones for Healthcare Applications -- 6.1 Introduction -- 6.1.1 Role of Artificial Intelligence in Drone Technology -- 6.1.2 Unmanned Aerial Vehicle-Drone Technology -- 6.2 Kinds of Drones Used by Medical Professionals -- 6.2.1 Multirotor -- 6.2.2 Only One Rotor -- 6.2.3 Permanent-Wing Drones -- 6.2.4 Drones for Passenger Ambulances -- 6.3 Medical and Public Health Surveillance -- 6.3.1 Telemedicine -- 6.3.2 Drones as Medical Transportation Devices -- 6.3.3 Advanced System for First Aid for the Elderly People -- 6.4 Potential Benefits of Drones in the Healthcare Industry -- 6.4.1 Top Medical Drone Delivery Services -- 6.4.2 Limitations of Drones in Healthcare -- 6.4.3 The Influence of COVID on Drones -- 6.4.4 Limitations of Drone Technology in the Healthcare Industry -- 6.4.4.1 Privacy -- 6.4.4.2 Legal Concerns -- 6.4.4.3 Rapid Transit-One of the Biggest Drawbacks of Drones is Time -- 6.4.4.4 Bugs in the Technology -- 6.4.4.5 Dependence on Weather -- 6.4.4.6 Hackable Drone Technology -- 6.5 Conclusion -- References -- Chapter 7 An Approach for Avoiding Collisions with Obstacles in Order to Enable Autonomous Cars to Travel Through Both Static and Moving Environments -- 7.1 Introduction -- 7.1.1 A Brief Overview of Driverless Cars -- 7.1.2 Objectives -- 7.1.3 Possible Uses for a Car Without a Driver -- 7.2 Related Works -- 7.3 Methodology of the Proposed Work -- 7.4 Experimental Results and Analysis -- 7.5 Results and Analysis -- 7.6 Conclusion -- References -- Chapter 8 Drivers' Emotions' Recognition Using Facial Expression from Live Video Clips in Autonomous Vehicles -- 8.1 Introduction -- 8.2 Related Work -- 8.2.1 Face Detection -- 8.2.2 Facial Emotion Recognition -- 8.3 Proposed Method -- 8.3.1 Dataset -- 8.3.2 Preprocessing -- 8.3.3 Grayscale Equalization. 8.4 Results and Analysis -- 8.5 Conclusions -- References -- Chapter 9 Models for the Driver Assistance System -- 9.1 Introduction -- 9.2 Related Survey -- 9.3 Proposed Methodology -- 9.3.1 Proposed System -- 9.3.2 Data Acquisition -- 9.3.3 Noise Reduction -- 9.3.4 Feature Extraction -- 9.3.5 Histogram of Oriented Gradients -- 9.3.6 Local Binary Pattern -- 9.3.7 Feature Selection -- 9.3.8 Classification -- 9.4 Experimental Study -- 9.4.1 Quantitative Investigation on the NTHU Drowsy Driver Detection Dataset -- 9.5 Conclusion -- References -- Chapter 10 Control of Autonomous Underwater Vehicles -- 10.1 Introduction -- 10.2 Literature Review -- 10.3 Control Problem in AUV Control System -- 10.4 Methodology -- 10.5 Results -- References -- Chapter 11 Security and Privacy Issues of AI in Autonomous Vehicles -- 11.1 Introduction -- 11.2 Development of Autonomous Cars with Existing Review -- 11.3 Automation Levels of Autonomous Vehicles -- 11.4 The Architecture of an Autonomous Vehicle -- 11.5 Threat Model -- 11.6 Autonomous Vehicles with AI in IoT-Enabled Environments -- 11.7 Physical Attacks Using AI Against Autonomous Vehicles -- 11.8 AI Cybersecurity Issues for Autonomous Vehicles -- 11.9 Cyberattack Defense Mechanisms -- 11.9.1 Identity-Based Approach -- 11.9.2 Key-Based Solution -- 11.9.3 Trust-Based Solution -- 11.9.4 Solution Based on Behavior Detection -- 11.10 Solution Based on Machine Learning -- 11.11 Conclusion -- References -- Index -- EULA. |
Record Nr. | UNINA-9910876861403321 |
Rajendran Sathiyaraj | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Artificial Intelligence in IoT and Cyborgization / / edited by Rajesh Kumar Dhanaraj, Bharat S. Rawal, Sathya Krishnamoorthi, Balamurugan Balusamy |
Autore | Dhanaraj Rajesh Kumar |
Edizione | [1st ed. 2023.] |
Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 |
Descrizione fisica | 1 online resource (191 pages) |
Disciplina | 629.892 |
Altri autori (Persone) |
RawalBharat S
KrishnamoorthiSathya BalusamyBalamurugan |
Collana | Studies in Computational Intelligence |
Soggetto topico |
Internet of things
Artificial intelligence Computational intelligence Cooperating objects (Computer systems) Internet of Things Artificial Intelligence Computational Intelligence Cyber-Physical Systems |
ISBN | 981-9943-03-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | Introduction to Cyborgization systems -- AI based Smart IoT systems -- Role of Machine Learning and Deep Learning applications in the Internet of Things (IoT) Security -- IOT Based Experimental Relaying System for Smart Grid -- Environment Twin based Deep learning model using Reconfigurable Holographic Surface for user location prediction -- Surveillance of Robotic Boat Using IoT and Image Processing -- Advanced Human – Computer Interaction Technology in Digital Twins -- CNN Architecture and Classification of Miosis and Mydriasis Clinical Conditions -- Role of Object Detection for Brain Tumor Identification Using Magnetic Resonance Image Scans -- Deep Learning Model for Predicting Diabetes Disease Using SVM -- Deep Learning For Targeted Treatment. . |
Record Nr. | UNINA-9910746959203321 |
Dhanaraj Rajesh Kumar | ||
Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Blockchain Technology in Corporate Governance : Transforming Business and Industries |
Autore | Sood Kiran |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (443 pages) |
Altri autori (Persone) |
DhanarajRajesh Kumar
BalusamyBalamurugan KadrySeifedine |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-86524-7
1-119-86523-9 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Foreword -- Preface -- Acknowledgment -- Chapter 1 Role of Blockchain Technology in the Modern Era -- 1.1 Introduction -- 1.2 What is Blockchain Technology? -- 1.3 Blockchain Technology in Healthcare 4.0 -- 1.3.1 Area of Blockchain Technology-Based Healthcare 4.0 -- 1.3.2 Smart Blockchain Healthcare 4.0 -- 1.4 Energy Sector -- 1.5 Applications of Blockchain in the Energy Sector -- 1.5.1 Decentralized Storage and Control in Power Grid -- 1.5.2 Electricity Trading Law -- 1.5.3 Electric Vehicles -- 1.5.4 Decrease the Global Carbon Emission -- 1.6 Blockchain-Based Financial Sector -- 1.6.1 Legal Policies of the Financial Sector -- 1.6.2 Credit Risk -- 1.6.3 KYC and Product Personalization -- 1.6.4 Insurance Monetary Management -- 1.6.5 Collaborative Techniques in Financial Services Chain -- 1.7 Bitcoins and Blockchain Sustainability Issues -- 1.8 Conclusion -- References -- Part 1: Blockchain: Opportunities for Healthcare 4.0 -- Chapter 2 BTCG4: Blockchain Technology in Electronic Healthcare Systems -- 2.1 Introduction -- 2.1.1 Healthcare Industry -- 2.1.2 Requirement of Electronic Healthcare Industry -- 2.1.2.1 System Security -- 2.1.2.2 Interoperability -- 2.1.2.3 Sharing of Information -- 2.1.2.4 Mobility -- 2.1.2.5 Mobile Health -- 2.1.2.6 Wireless -- 2.1.2.7 Internet of Things -- 2.2 Overview of Blockchain -- 2.2.1 Distinct Characteristics of the Use of Blockchain in the Electronic Healthcare Industry -- 2.2.1.1 Decentralization of Storage -- 2.2.1.2 Authentication -- 2.2.1.3 Immutability -- 2.2.1.4 Improvement in Security -- 2.2.1.5 Efficiency -- 2.2.1.6 Distributed Ledger -- 2.3 Blockchain Applications -- 2.3.1.1 Smart Contracts -- 2.3.1.2 Spotting and Preventing Fraudulent Activity -- 2.3.1.3 Authentication of the User's Identity -- 2.4 Challenges Associated with Blockchain Technology.
2.4.1 Unavailability of Uniformity -- 2.4.2 Decentralization of Storage and Leakage of Privacy -- 2.4.3 Handling of Critical Information -- 2.4.4 Scalability and Internet of Things Overhead -- 2.4.5 Vulnerabilities Specific to Blockchain Technology -- 2.4.6 General Vulnerabilities in Software -- 2.5 Opportunities of Blockchain in the Healthcare Industry -- 2.5.1 The Gem Health Network Facilitates the Exchange of Healthcare Data -- 2.5.2 MDREC -- 2.5.3 System of Pervasive Social Network -- 2.5.4 Virtual Resources -- 2.5.5 Data Recording for Body-Worn Sensing Devices Based on Context -- 2.5.6 MeDShare -- 2.5.7 Blockchain-Based Clinical and Precise Platform Trials -- 2.5.8 Access to Health-Related Information -- 2.6 Concluding Remarks -- References -- Chapter 3 Blockchain Technology and Healthcare: Towards Combating COVID-19 -- 3.1 Introduction -- 3.1.1 Blockchain Technology in Healthcare -- 3.1.2 Features of Blockchain Technology -- 3.1.3 Applications of Blockchain in Healthcare -- 3.1.4 Data Management -- 3.1.5 Electronic Health Record -- 3.1.6 Claims and Billing Management -- 3.1.7 Pandemic Data Tracking -- 3.1.8 Tracking PPE -- 3.1.9 Vaccine Monitoring -- 3.1.10 Future Vaccination -- 3.1.11 Digital Contact Tracing -- 3.1.12 Prescription Management -- 3.2 Combating COVID-19 -- 3.2.1 Handling Fake Infodemic Using MiPasa Platform -- 3.2.2 VIRI Platform Preventing Spread -- 3.2.3 WIShelter for Data Privacy -- 3.3 Reviving Capabilities -- 3.3.1 Blockchain in Healthcare - Global Scenario -- 3.3.2 Blockchain in Healthcare - Indian Scenario -- 3.4 Challenges in Adopting Blockchain in Healthcare -- 3.5 Conclusion -- References -- Chapter 4 Blockchain-Based Energy-Efficient Heterogeneous Sensor Networks in Healthcare System -- 4.1 Introduction -- 4.2 Related Work -- 4.2.1 Literature Gap -- 4.2.2 Fuzzy Improved Model (Improved Model Fuzzy). 4.3 Proposed Energy Protocol with Blockchain -- 4.4 Conclusion -- References -- Chapter 5 Development of a Safe Health Framework Using a Temporary Blockchain Technique -- 5.1 Introduction -- 5.2 Related Work -- 5.2.1 Blockchain-Based Healthcare Organization -- 5.2.2 Medrek -- 5.2.3 Stratum -- 5.2.4 Factor -- 5.2.5 Pocketbook -- 5.2.6 Tyrion -- 5.2.7 Roomed -- 5.3 Secure Framework (Sefira) for Healthcare System -- 5.3.1 Progressive Temporal Blockchain -- 5.3.2 Temporal Shadow -- 5.3.2.1 Context-Based Merkle Tree (CBMT) -- 5.3.2.2 Temporal Hash Signature (THS) -- 5.3.2.3 Context-Based Access Control (CBAC) in Smart Contract -- 5.3.2.4 Layered Architecture of SeFra -- 5.4 Conclusion -- References -- Chapter 6 Data Consistency, Transparency, and Privacy in Healthcare Systems Using Blockchain Technology -- 6.1 Introduction -- 6.2 The Cutting Edge in Genomics -- 6.2.1 Next Generation Sequencing (NGS) -- 6.2.2 EDGE Bioinformatics -- 6.2.3 Pharmacogenetics and Personalized Medicine -- 6.2.4 Prenatal Diagnosis -- 6.2.5 Diagnosis of Infectious Diseases -- 6.2.6 Gene Therapy and Genome Editing -- 6.2.7 Genomics with Blockchain Technology -- 6.3 Medical Records -- 6.3.1 Blockchain Architecture - Components and Types -- 6.3.2 Blockchain Benefits in Healthcare Records Maintenance -- 6.3.3 Brief Overview on the Blockchain-Enabled Patient Healthcare Record Management Process -- 6.3.3.1 Data Generation -- 6.3.3.2 Data Cleaning and Enrichment -- 6.3.3.3 Data Capturing -- 6.3.3.4 Data Consumption -- 6.3.3.5 Data Mining -- 6.4 Supply Chain Management -- 6.4.1 Pharmaceutical Applications -- 6.4.2 Medical Devices and Medical Supplies -- 6.4.3 Internet of Healthy Things -- 6.4.4 Public Health -- References -- Part 2: Blockchain in the Energy Sector -- Chapter 7 Application of Blockchain Technology in Sustainable Energy Systems -- 7.1 Introduction -- 7.2 Blockchain. 7.3 Blockchain Applications in Energy Sector -- 7.3.1 Blockchain Applications in Smart Grid -- 7.3.2 Blockchain Applications in Energy Trading -- 7.3.3 Blockchain Applications in Micro-Grid -- 7.3.4 Blockchain in Electric Vehicles -- 7.3.5 Blockchain Applications in Cyber Physical Security -- 7.4 Blockchain as New Substructure -- 7.5 Limitations of Blockchain -- 7.6 Conclusions -- References -- Chapter 8 Revamping Energy Sector with a Trusted Network: Blockchain Technology -- 8.1 Introduction -- 8.2 Energy Digital Transformation -- 8.2.1 Digitalization, Decarbonization, and Decentralization of the Energy Sector -- 8.2.2 Blockchain: A Disruptive Technology of the Energy Value Chain -- 8.2.3 Blockchain Advancing DERs -- 8.3 Energy Trading Mechanisms -- 8.3.1 Blockchain P2P Energy Trading: A New Financing Mechanism -- 8.3.2 Blockchain-Based Virtual Power Plant (VPP) Model -- 8.3.3 Blockchain Technology for Electric Vehicle (EV) Charging and Discharging -- 8.4 Blockchain Unlocking New Demand Side Management Models -- 8.4.1 Blockchain in the Energy Efficiency Market -- 8.4.2 New Blockchain-Enabled Demand Response (DR) Models -- 8.4.3 Blockchain-Based Energy Performance Contracting -- 8.5 Energy Blockchain's Social and Environmental Impacts -- 8.5.1 Blockchain Market for Carbon Credits and RECs -- 8.5.2 Fighting Energy Poverty -- 8.6 Conclusion -- References -- Part 3: The Impact of Blockchain on the Financial Industry -- Chapter 9 Process Innovation and Unification of KYC Document Management System with Blockchain in Banking -- 9.1 Introduction -- 9.2 Blockchain -- 9.3 Blockchain Technology Applications Sectors -- 9.4 Know Your Customer (KYC) -- 9.4.1 KYC Advantages -- 9.4.2 KYC Document List -- 9.4.3 Re-KYC -- 9.4.4 Types of KYC Verification -- 9.4.5 KYC Through Manual Verification Process -- 9.4.6 Typical KYC Verification Process - Issues and Challenges. 9.5 Electronic Know Your Customer (e-KYC) -- 9.5.1 e-KYC Documents Management System Using Blockchain -- 9.6 Blockchain KYC Verification Process Advantages -- 9.7 Taxonomy of Blockchain Systems -- 9.8 Literature Survey -- 9.9 Potential Use-Cases of Blockchain Technology in Banks -- 9.10 Blockchain KYC-AML Solution -- 9.11 Conclusion -- References -- Chapter 10 Applying Blockchain Technology to Address NPA Issues During the COVID-19 Pandemic -- 10.1 Introduction -- 10.2 ACT 1: Foundation of Non-Performing Assets Management and Blockchain Technology -- 10.3 Induction to Non-Performing Assets -- 10.4 Charter for NPA Management -- 10.5 Reasons for Growth of NPAs -- 10.6 Induction to Blockchain Technology -- 10.7 Possible Applications of Blockchain Technology -- 10.8 ACT II Confrontation Stage -- 10.9 Investigation of Loan Quality-Related Issues in the Indian Banking System -- 10.10 Stage 3 - Treatment Stage for Bad Loans Through Blockchain in Indian Banks -- 10.11 The Challenges of the Blockchain Technology in Financial Sector -- 10.12 Conclusion -- References -- Chapter 11 Blockchain and Smart Contracts for Insurance Industry -- 11.1 Introduction -- 11.1.1 Blockchain in Insurance -- 11.1.2 Blockchain in Insurance Applications -- 11.2 Smart Contracts by Insurance Providers Using Blockchain Technologies -- 11.2.1 Blockchain: A Built-In Data -- 11.2.2 Advanced Insurance Automation -- 11.2.3 Cyber Security in Insurance through Blockchain -- 11.3 Review of Literature -- 11.4 Opportunities Provided by Blockchain Technology -- 11.5 How Blockchain Technologies Work in Insurance Companies -- 11.6 Challenges Posed by Blockchain -- 11.6.1 Technologies Leveraging Technologies -- 11.6.2 Strategic Alliances -- 11.6.3 New Product Development -- 11.7 Conclusion -- References -- Chapter 12 How Blockchain Can Transform the Financial Services Industry -- 12.1 Introduction. 12.2 Literature Review. |
Record Nr. | UNINA-9910623987903321 |
Sood Kiran | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Blockchain with Artificial Intelligence for Healthcare : A Synergistic Approach |
Autore | Malviya Rishabha |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Bristol : , : Institute of Physics Publishing, , 2023 |
Descrizione fisica | 1 online resource (209 pages) |
Disciplina | 610.285 |
Altri autori (Persone) |
SinghArun Kumar
SundramSonali BalusamyBalamurugan KadrySeifedine |
Collana | IOP Ebooks Series |
ISBN | 0-7503-5841-6 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910915779203321 |
Malviya Rishabha | ||
Bristol : , : Institute of Physics Publishing, , 2023 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Intelligence for Autonomous Finance |
Autore | Gupta Deepak |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (337 pages) |
Altri autori (Persone) |
GuptaMukul
DhanarajRajesh Kumar BalusamyBalamurugan GuptaParth M |
Collana | Fintech in a Sustainable Digital Society Series |
ISBN |
9781394233236
139423323X 9781394233250 1394233256 9781394233243 1394233248 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910908384403321 |
Gupta Deepak | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computational Intelligence in Bioprinting : Challenges and Future Directions |
Autore | Gangadevi E |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (346 pages) |
Altri autori (Persone) |
ShriM. Lawanya
BalusamyBalamurugan |
ISBN |
1-394-20487-6
1-394-20486-8 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 The Emergence of Bioprinting and Computational Intelligence -- 1.1 Introduction -- 1.2 Related Study -- 1.3 Understanding the Basics of Bioprinting and Computational Intelligence -- 1.3.1 Bioprinting: The Basics -- 1.3.2 Computational Intelligence: The Basics -- 1.3.3 Applications of Bioprinting and Computational Intelligence -- 1.4 The Role of Computational Intelligence in Bioprinting -- 1.5 Applications of Bioprinting and Computational Intelligence in Medicine -- 1.6 Bioprinting and Computational Intelligence in Tissue Engineering and Regenerative Medicine -- 1.7 Advancements in Bioprinting and Computational Intelligence Technologies -- 1.8 The Ethical and Regulatory Implications of Bioprinting and Computational Intelligence -- 1.9 The Future of Bioprinting and Computational Intelligence: Opportunities and Challenges -- 1.10 Case Studies: Bioprinting and Computational Intelligence in Action -- 1.10.1 Trends in Computational Intelligence and Bioprinting -- 1.10.2 Challenges in Computational Intelligence and Bioprinting -- 1.11 Conclusion -- References -- Chapter 2 Design, Architecture, Implementation, and Evaluation of Bioprinting Technology for Tissue Engineering -- 2.1 Introduction -- 2.2 3D Bioprinting -- 2.3 Material Characteristics -- 2.3.1 Printability -- 2.4 Mechanical Properties -- 2.5 Biomaterials -- 2.6 Design, Architecture of 3D Bioprinting -- 2.6.1 Inkjet Bioprinting -- 2.6.2 Laser-Assisted Bioprinting (LAB) -- 2.6.3 Extrusion Bioprinting -- 2.7 3D Bioprinting Tissue Models -- 2.8 3D Multimaterial Bioprinting-Development of Complex Architectures -- 2.9 Implementation and Evaluation -- 2.10 Bone -- 2.11 Cartilage -- 2.12 Soft Tissue Engineering -- 2.13 Vascular Tissue -- 2.14 Skin -- 2.15 Biocompatibility and Control of Degradation and Byproducts.
2.16 Conclusion -- References -- Chapter 3 Design and Development of IoT Devices: Methods, Tools and Technologies -- 3.1 Introduction to IoT Devices and 3D Bioprinting -- 3.2 Methodology for Designing IoT Devices for 3D Bioprinting -- 3.3 Additional Considerations in IoT Device Design for 3D Bioprinting -- 3.4 Tools for Developing IoT Devices for 3D Bioprinting -- 3.4.1 Microcontrollers and Development Boards -- 3.4.2 Sensors and Actuators -- 3.4.3 Communication Protocols -- 3.4.4 Software Development Kits -- 3.4.5 Cloud Platforms -- 3.4.6 3D Printing Software -- 3.4.7 CAD Software -- 3.4.8 Simulation Software -- 3.4.9 Data Analytics Tools -- 3.4.10 Cybersecurity Tools -- 3.5 Techniques for Developing IoT Devices for 3D Bioprinting -- 3.5.1 Agile Development -- 3.5.2 Rapid Prototyping -- 3.5.3 Test-Driven Development -- 3.5.4 Continuous Integration -- 3.5.5 Modular Design -- 3.5.6 Power Optimization -- 3.5.7 Data Processing Techniques -- 3.5.8 Quality Assurance -- 3.5.9 Cybersecurity Techniques -- 3.5.10 Standardization -- 3.6 Case Studies of IoT Devices for 3D Bioprinting -- 3.7 Future Directions in IoT Devices for 3D Bioprinting -- 3.8 Conclusion -- References -- Chapter 4 AI-Based AR/VR Models in Biomedical Sustainable Industry 4.0 -- 4.1 Introduction -- 4.2 Mixed Augmented Reality -- 4.2.1 SDK in Augmented Reality -- 4.2.2 Application Scope of Augmented Reality -- 4.2.2.1 Video Capabilities -- 4.2.2.2 AR Toolkit Technology -- 4.2.2.3 Quality of Tracking System -- 4.3 AR Technology -- 4.3.1 High Level Augmented Reality -- 4.3.2 Limitations of Enhanced Image -- 4.3.3 Limitations of CAD Model -- 4.3.4 Augmented Reality in Manufacturing Sector -- 4.4 Requirement of Augmented Reality -- 4.4.1 Capability of AR -- 4.4.2 Computational Hardware Capabilities -- 4.4.3 Symbol-Based Tracking Software -- 4.5 Conclusions -- References. Chapter 5 Computational Intelligence-Based Image Classification for 3D Printing: Issues and Challenges -- 5.1 Introduction -- 5.2 Brief Concepts -- 5.2.1 3D Printing Tools -- 5.2.2 Artificial Intelligence-Based Digital Marketing -- 5.2.3 Automated Machine Learning Prediction System -- 5.3 Role of Artificial Intelligence in Industry 4.0 -- 5.3.1 3D Printing Process -- 5.3.2 Enhancement in Machine Learning -- 5.3.3 Genetics-Based Machine Learning -- 5.3.4 Slicing Technique in 3D Model -- 5.3.5 Printing Path Trajectory -- 5.3.6 Improvement in Computational Simulation -- 5.3.7 Improving Service-Oriented Architecture -- 5.3.8 Capabilities of Cloud Computing -- 5.3.9 Hamming Distance Technique -- 5.3.10 Improving Knowledge Skills -- 5.3.11 Object Detection Algorithm -- 5.3.12 Improvement in Manufacturing Defects -- 5.4 Conclusion -- References -- Chapter 6 Role of Cybersecurity to Safeguard 3D Bioprinting in Healthcare: Challenges and Opportunities -- 6.1 Introduction -- 6.2 Related Work -- 6.3 Creation of 3D Objects and Printing -- 6.3.1 Benefits of 3D Printing -- 6.3.2 Bioprinting -- 6.3.3 A Flow Diagram Depicting the Bioprinting Process -- 6.3.4 Datasets Used in Bioprinting -- 6.4 Schematic Diagram of 3D Bioprinting -- 6.4.1 3D Bioprinting Strategies -- 6.4.2 Comparison Among the 3D Bioprinting Approaches -- 6.4.3 Materials Used in Bioprinting -- 6.4.4 Bioprinting in Diverse Domains -- 6.5 Cyberthreats Posed to Bioprinting -- 6.5.1 Challenges and Opportunities of Cybersecurity in Bioprinting -- 6.5.2 Proposed Solutions -- 6.5.3 Combating the Cybersecurity Risks of 3D Bioprinting -- 6.5.4 Blockchain Technology and Bioprinting -- 6.5.5 A Comparative Survey of Cyberthreats in Additive Manufacturing Technology -- 6.6 Conclusion -- References -- Chapter 7 Legal and Bioethical View of Educational Sectors and Industrial Areas of 3D Bioprinting. 7.1 Introduction -- 7.2 Current 3D Bioprinting Market Trends -- 7.3 Legal and Ethical Perspectives -- 7.4 Regarding the Introduction and Advancement of 3D Bioprinting -- 7.4.1 Current and Potential Paths for Bioethical Discourse -- 7.4.2 Legal Concerns with the Introduction of 3D Bioprinting Into Clinical Practice -- 7.4.3 Ethical Concerns with the 3D Bioprinting of Artificial Ovaries and Their Use in Clinical Settings -- 7.5 Conclusion -- 7.6 Future Scope -- References -- Chapter 8 Optimizing 3D Bioprinting Using Advanced Deep Learning Techniques A Comparative Study of CNN, RNN, and GAN -- 8.1 Introduction -- 8.2 Convolutional Neural Networks in Optimization of 3D Bioprinting -- 8.3 RNN in Optimization of 3D Bioprinting -- 8.4 Generative Adversarial Networks (GAN) in Optimization of 3D Bioprinting -- 8.5 Datasets Used for Optimization of 3D Bioprinting -- 8.6 3D Slicer Medical Image Segmentation Dataset -- 8.7 Sensor Data -- 8.8 Open Organ Database Dataset -- 8.9 Proposed Model -- 8.10 CNN U-Net -- 8.11 RNN Long Short-Term Memory -- 8.12 Wasserstein Generative Adversarial Network -- 8.13 Process of Combined Model -- 8.14 Conclusion -- References -- Chapter 9 Research Trends in Intelligence-Based Bioprinting for Construction Engineering Applications -- 9.1 Introduction -- 9.2 Analysis of Bioprinting -- 9.3 Model Development in Bioprinting Technology -- 9.4 3D Bioprinting Academic Institutions in the World -- 9.5 Emerging Bioprinting Technology -- 9.5.1 Opportunities -- 9.5.2 Challenges -- 9.6 Development in Bioengineering -- 9.7 Evolution of Patent Trends in Bioprinting -- 9.8 Conclusions -- References -- Chapter 10 Design and Development to Collect and Analyze Data Using Bioprinting Software for Biotechnology Industry -- 10.1 Introduction -- 10.2 Digital Technology in Bioprinting -- 10.2.1 Shape of Bioprinting. 10.2.2 Heterogeneity Units of Material -- 10.2.2.1 Tissue Improvement -- 10.2.2.2 Formation of Biomaterials -- 10.2.2.3 Biomaterial and Biological Factors -- 10.2.3 Dynamic Changes in Fabrication Process -- 10.3 Designing Techniques in Bioprinting -- 10.3.1 Data Processing in Biomedical Imaging -- 10.3.2 Process Bioprinting Techniques -- 10.3.3 Interaction of Bioink Formulation -- 10.4 3D Bioprinting -- 10.4.1 Optimized Bioprinting -- 10.4.2 Modifying Crosslinking -- 10.4.3 Multiple Crosslinking -- 10.4.4 Enhance Bioprinting -- 10.4.5 Hybrid Bioprinting -- 10.5 Enhanced Biotissue Printing -- 10.5.1 Integrating Thickness of Engineered Tissue -- 10.5.2 Integration and Enhancement of Cellular Interaction -- 10.5.3 DNA with a Smart Biomaterial -- 10.5.3.1 Biomaterials -- 10.5.3.2 Reactive Hydrogel to External Stimuli -- 10.5.4 Simulation -- 10.6 Conclusion -- 10.7 Future Work -- References -- Chapter 11 Cyborg Intelligence for Bioprinting in Computational Design and Analysis of Medical Application -- 11.1 Introduction -- 11.2 Next Generation of Bioprinting -- 11.2.1 Medicine Management -- 11.2.2 Varieties of Bioprinting Material -- 11.2.2.1 Thermoresponsive Materials -- 11.2.2.2 Biocompatible Polymers Materials -- 11.2.2.3 Endophyte Biocompatible Polymers Materials -- 11.2.2.4 Photo-Conductive Polymer Materials -- 11.2.2.5 UV-Assisted in 3D Printing -- 11.2.2.6 Sensitivity Polymeric Materials -- 11.2.2.7 Macromolecules Materials -- 11.2.2.8 Dual-Sensitive Materials -- 11.2.3 Biosensing Scaffolds -- 11.3 Biosensors and Actuators -- 11.3.1 Fabricated Scaffold Tissues -- 11.3.2 Vascularizing Tissues -- 11.3.3 4D Bioprinting Neural Tissue -- 11.3.4 Longitudinal Deformation -- 11.3.5 Uses of Biomedical Appliances -- 11.4 Enhancing Technology in Bioprinting -- 11.5 Conclusion and Future Work -- References. Chapter 12 Computer Vision-Aides 3D Bioprinting in Ophthalmology Recent Trends and Advancements. |
Record Nr. | UNINA-9910877204603321 |
Gangadevi E | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Computer Vision in Smart Agriculture and Crop Management |
Autore | Dhanaraj Rajesh Kumar |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (402 pages) |
Altri autori (Persone) |
BalusamyBalamurugan
SamuelPrithi SathyamoorthyMalathy BashirAli Kashif |
ISBN |
9781394186662
1394186665 9781394186686 1394186681 9781394186679 1394186673 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910908384203321 |
Dhanaraj Rajesh Kumar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Deep Learning for Targeted Treatments : Transformation in Healthcare |
Autore | Malviya Rishabha |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2022 |
Descrizione fisica | 1 online resource (458 pages) |
Altri autori (Persone) |
GhineaGheorghita
DhanarajRajesh Kumar BalusamyBalamurugan SundramSonali |
Soggetto genere / forma | Electronic books. |
ISBN |
1-119-85798-8
1-119-85797-X |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgement -- 1 Deep Learning and Site-Specific Drug Delivery: The Future and Intelligent Decision Support for Pharmaceutical Manufacturing Science -- 1.1 Introduction -- 1.2 Drug Discovery, Screening and Repurposing -- 1.3 DL and Pharmaceutical Formulation Strategy -- 1.3.1 DL in Dose and Formulation Prediction -- 1.3.2 DL in Dissolution and Release Studies -- 1.3.3 DL in the Manufacturing Process -- 1.4 Deep Learning Models for Nanoparticle-Based Drug Delivery -- 1.4.1 Nanoparticles With High Drug Delivery Capacities Using Perturbation Theory -- 1.4.2 Artificial Intelligence and Drug Delivery Algorithms -- 1.4.3 Nanoinformatics -- 1.5 Model Prediction for Site-Specific Drug Delivery -- 1.5.1 Prediction of Mode and a Site-Specific Action -- 1.5.2 Precision Medicine -- 1.6 Future Scope and Challenges -- 1.7 Conclusion -- References -- 2 Role of Deep Learning, Blockchain and Internet of Things in Patient Care -- 2.1 Introduction -- 2.2 IoT and WBAN in Healthcare Systems -- 2.2.1 IoT in Healthcare -- 2.2.2 WBAN -- 2.2.2.1 Key Features of Medical Networks in the Wireless Body Area -- 2.2.2.2 Data Transmission & -- Storage Health -- 2.2.2.3 Privacy and Security Concerns in Big Data -- 2.3 Blockchain Technology in Healthcare -- 2.3.1 Importance of Blockchain -- 2.3.2 Role of Blockchain in Healthcare -- 2.3.3 Benefits of Blockchain in Healthcare Applications -- 2.3.4 Elements of Blockchain -- 2.3.5 Situation Awareness and Healthcare Decision Support with Combined Machine Learning and Semantic Modeling -- 2.3.6 Mobile Health and Remote Monitoring -- 2.3.7 Different Mobile Health Application with Description of Usage in Area of Application -- 2.3.8 Patient-Centered Blockchain Mode -- 2.3.9 Electronic Medical Record -- 2.3.9.1 The Most Significant Barriers to Adoption Are.
2.3.9.2 Concern Regarding Negative Unintended Consequences of Technology -- 2.4 Deep Learning in Healthcare -- 2.4.1 Deep Learning Models -- 2.4.1.1 Recurrent Neural Networks (RNN) -- 2.4.1.2 Convolutional Neural Networks (CNN) -- 2.4.1.3 Deep Belief Network (DBN) -- 2.4.1.4 Contrasts Between Models -- 2.4.1.5 Use of Deep Learning in Healthcare -- 2.5 Conclusion -- 2.6 Acknowledgments -- References -- 3 Deep Learning on Site-Specific Drug Delivery System -- 3.1 Introduction -- 3.2 Deep Learning -- 3.2.1 Types of Algorithms Used in Deep Learning -- 3.2.1.1 Convolutional Neural Networks (CNNs) -- 3.2.1.2 Long Short-Term Memory Networks (LSTMs) -- 3.2.1.3 Recurrent Neural Networks -- 3.2.1.4 Generative Adversarial Networks (GANs) -- 3.2.1.5 Radial Basis Function Networks -- 3.2.1.6 Multilayer Perceptron -- 3.2.1.7 Self-Organizing Maps -- 3.2.1.8 Deep Belief Networks -- 3.3 Machine Learning and Deep Learning Comparison -- 3.4 Applications of Deep Learning in Drug Delivery System -- 3.5 Conclusion -- References -- 4 Deep Learning Advancements in Target Delivery -- 4.1 Introduction: Deep Learning and Targeted Drug Delivery -- 4.2 Different Models/Approaches of Deep Learning and Targeting Drug -- 4.3 QSAR Model -- 4.3.1 Model of Deep Long-Term Short-Term Memory -- 4.3.2 RNN Model -- 4.3.3 CNN Model -- 4.4 Deep Learning Process Applications in Pharmaceutical -- 4.5 Techniques for Predicting Pharmacotherapy -- 4.6 Approach to Diagnosis -- 4.7 Application -- 4.7.1 Deep Learning in Drug Discovery -- 4.7.2 Medical Imaging and Deep Learning Process -- 4.7.3 Deep Learning in Diagnostic and Screening -- 4.7.4 Clinical Trials Using Deep Learning Models -- 4.7.5 Learning for Personalized Medicine -- 4.8 Conclusion -- Acknowledgment -- References -- 5 Deep Learning and Precision Medicine: Lessons to Learn for the Preeminent Treatment for Malignant Tumors. 5.1 Introduction -- 5.2 Role of DL in Gene Identification, Unique Genomic Analysis, and Precise Cancer Diagnosis -- 5.2.1 Gene Identification and Genome Data -- 5.2.2 Image Diagnosis -- 5.2.3 Radiomics, Radiogenomics, and Digital Biopsy -- 5.2.4 Medical Image Analysis in Mammography -- 5.2.5 Magnetic Resonance Imaging -- 5.2.6 CT Imaging -- 5.3 DL in Next-Generation Sequencing, Biomarkers, and Clinical Validation -- 5.3.1 Next-Generation Sequencing -- 5.3.2 Biomarkers and Clinical Validation -- 5.4 DL and Translational Oncology -- 5.4.1 Prediction -- 5.4.2 Segmentation -- 5.4.3 Knowledge Graphs and Cancer Drug Repurposing -- 5.4.4 Automated Treatment Planning -- 5.4.5 Clinical Benefits -- 5.5 DL in Clinical Trials-A Necessary Paradigm Shift -- 5.6 Challenges and Limitations -- 5.7 Conclusion -- References -- 6 Personalized Therapy Using Deep Learning Advances -- 6.1 Introduction -- 6.2 Deep Learning -- 6.2.1 Convolutional Neural Networks -- 6.2.2 Autoencoders -- 6.2.3 Deep Belief Network (DBN) -- 6.2.4 Deep Reinforcement Learning -- 6.2.5 Generative Adversarial Network -- 6.2.6 Long Short-Term Memory Networks -- References -- 7 Tele-Health Monitoring Using Artificial Intelligence Deep Learning Framework -- 7.1 Introduction -- 7.2 Artificial Intelligence -- 7.2.1 Types of Artificial Intelligence -- 7.2.1.1 Machine Intelligence -- 7.2.1.2 Types of Machine Intelligence -- 7.2.2 Applications of Artificial Intelligence -- 7.2.2.1 Role in Healthcare Diagnostics -- 7.2.2.2 AI in Telehealth -- 7.2.2.3 Role in Structural Health Monitoring -- 7.2.2.4 Role in Remote Medicare Management -- 7.2.2.5 Predictive Analysis Using Big Data -- 7.2.2.6 AI's Role in Virtual Monitoring of Patients -- 7.2.2.7 Functions of Devices -- 7.2.2.8 Clinical Outcomes Through Remote Patient Monitoring -- 7.2.2.9 Clinical Decision Support. 7.2.3 Utilization of Artificial Intelligence in Telemedicine -- 7.2.3.1 Artificial Intelligence-Assisted Telemedicine -- 7.2.3.2 Telehealth and New Care Models -- 7.2.3.3 Strategy of Telecare Domain -- 7.2.3.4 Role of AI-Assisted Telemedicine in Various Domains -- 7.3 AI-Enabled Telehealth: Social and Ethical Considerations -- 7.4 Conclusion -- References -- 8 Deep Learning Framework for Cancer Diagnosis and Treatment -- 8.1 Deep Learning: An Emerging Field for Cancer Management -- 8.2 Deep Learning Framework in Diagnosis and Treatment of Cancer -- 8.3 Applications of Deep Learning in Cancer Diagnosis -- 8.3.1 Medical Imaging Through Artificial Intelligence -- 8.3.2 Biomarkers Identification in the Diagnosis of Cancer Through Deep Learning -- 8.3.3 Digital Pathology Through Deep Learning -- 8.3.4 Application of Artificial Intelligence in Surgery -- 8.3.5 Histopathological Images Using Deep Learning -- 8.3.6 MRI and Ultrasound Images Through Deep Learning -- 8.4 Clinical Applications of Deep Learning in the Management of Cancer -- 8.5 Ethical Considerations in Deep Learning-Based Robotic Therapy -- 8.6 Conclusion -- Acknowledgments -- References -- 9 Applications of Deep Learning in Radiation Therapy -- 9.1 Introduction -- 9.2 History of Radiotherapy -- 9.3 Principal of Radiotherapy -- 9.4 Deep Learning -- 9.5 Radiation Therapy Techniques -- 9.5.1 External Beam Radiation Therapy -- 9.5.2 Three-Dimensional Conformal Radiation Therapy (3D-CRT) -- 9.5.3 Intensity Modulated Radiation Therapy (IMRT) -- 9.5.4 Image-Guided Radiation Therapy (IGRT) -- 9.5.5 Intraoperative Radiation Therapy (IORT) -- 9.5.6 Brachytherapy -- 9.5.7 Stereotactic Radiosurgery (SRS) -- 9.6 Different Role of Deep Learning with Corresponding Role of Medical Physicist -- 9.6.1 Deep Learning in Patient Assessment -- 9.6.1.1 Radiotherapy Results Prediction. 9.6.1.2 Respiratory Signal Prediction -- 9.6.2 Simulation Computed Tomography -- 9.6.3 Targets and Organs-at-Risk Segmentation -- 9.6.4 Treatment Planning -- 9.6.4.1 Beam Angle Optimization -- 9.6.4.2 Dose Prediction -- 9.6.5 Other Role of Deep Learning in Corresponds with Medical Physicists -- 9.7 Conclusion -- References -- 10 Application of Deep Learning in Radiation Therapy -- 10.1 Introduction -- 10.2 Radiotherapy -- 10.3 Principle of Deep Learning and Machine Learning -- 10.3.1 Deep Neural Networks (DNN) -- 10.3.2 Convolutional Neural Network -- 10.4 Role of AI and Deep Learning in Radiation Therapy -- 10.5 Platforms for Deep Learning and Tools for Radiotherapy -- 10.6 Radiation Therapy Implementation in Deep Learning -- 10.6.1 Deep Learning and Imaging Techniques -- 10.6.2 Image Segmentation -- 10.6.3 Lesion Segmentation -- 10.6.4 Computer-Aided Diagnosis -- 10.6.5 Computer-Aided Detection -- 10.6.6 Quality Assurance -- 10.6.7 Treatment Planning -- 10.6.8 Treatment Delivery -- 10.6.9 Response to Treatment -- 10.7 Prediction of Outcomes -- 10.7.1 Toxicity -- 10.7.2 Survival and the Ability to Respond -- 10.8 Deep Learning in Conjunction With Radiomoic -- 10.9 Planning for Treatment -- 10.9.1 Optimization of Beam Angle -- 10.9.2 Prediction of Dose -- 10.10 Deep Learning's Challenges and Future Potential -- 10.11 Conclusion -- References -- 11 Deep Learning Framework for Cancer -- 11.1 Introduction -- 11.2 Brief History of Deep Learning -- 11.3 Types of Deep Learning Methods -- 11.4 Applications of Deep Learning -- 11.4.1 Toxicity Detection for Different Chemical Structures -- 11.4.2 Mitosis Detection -- 11.4.3 Radiology or Medical Imaging -- 11.4.4 Hallucination -- 11.4.5 Next-Generation Sequencing (NGS) -- 11.4.6 Drug Discovery -- 11.4.7 Sequence or Video Generation -- 11.4.8 Other Applications -- 11.5 Cancer -- 11.5.1 Factors. 11.5.1.1 Heredity. |
Record Nr. | UNINA-9910595599103321 |
Malviya Rishabha | ||
Newark : , : John Wiley & Sons, Incorporated, , 2022 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Digital Twins in Industrial Production and Smart Manufacturing : An Understanding of Principles, Enhancers, and Obstacles |
Autore | Dhanaraj Rajesh Kumar |
Edizione | [1st ed.] |
Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
Descrizione fisica | 1 online resource (444 pages) |
Altri autori (Persone) |
BalusamyBalamurugan
SamuelPrithi BashirAli Kashif KadrySeifedine |
ISBN |
1-394-19533-8
1-394-19532-X 1-394-19531-1 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Record Nr. | UNINA-9910889695103321 |
Dhanaraj Rajesh Kumar | ||
Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|