Jet single-time Lagrange geometry and its applications [[electronic resource] /] / Vladimir Balan, Mircea Neagu |
Autore | Balan Vladimir <1958-> |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, c2011 |
Descrizione fisica | 1 online resource (212 p.) |
Disciplina |
530.14/3
530.143 |
Altri autori (Persone) | NeaguMircea <1973-> |
Soggetto topico |
Geometry, Differential
Lagrange equations Field theory (Physics) |
Soggetto genere / forma | Electronic books. |
ISBN |
1-283-28286-0
9786613282866 1-118-14378-7 1-118-14375-2 1-118-14376-0 |
Classificazione | MAT012000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Jet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet Γ-linear connections; 2.2 Local torsion and curvature d-tensors
2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal Γ-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism 4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics εDL1n; 5.2 Geometrical Maxwell equations on εDL1n; 5.3 Geometrical Einstein equations on εDL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moór metric of order three 6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moór metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moór metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moór metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moór metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures 7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moór metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moór metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moór metric of order four 8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four |
Record Nr. | UNINA-9910139588203321 |
Balan Vladimir <1958-> | ||
Hoboken, N.J., : John Wiley & Sons, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Jet single-time Lagrange geometry and its applications [[electronic resource] /] / Vladimir Balan, Mircea Neagu |
Autore | Balan Vladimir <1958-> |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, c2011 |
Descrizione fisica | 1 online resource (212 p.) |
Disciplina |
530.14/3
530.143 |
Altri autori (Persone) | NeaguMircea <1973-> |
Soggetto topico |
Geometry, Differential
Lagrange equations Field theory (Physics) |
ISBN |
1-283-28286-0
9786613282866 1-118-14378-7 1-118-14375-2 1-118-14376-0 |
Classificazione | MAT012000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Jet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet Γ-linear connections; 2.2 Local torsion and curvature d-tensors
2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal Γ-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism 4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics εDL1n; 5.2 Geometrical Maxwell equations on εDL1n; 5.3 Geometrical Einstein equations on εDL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moór metric of order three 6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moór metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moór metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moór metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moór metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures 7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moór metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moór metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moór metric of order four 8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four |
Record Nr. | UNINA-9910831045203321 |
Balan Vladimir <1958-> | ||
Hoboken, N.J., : John Wiley & Sons, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Jet single-time Lagrange geometry and its applications / / Vladimir Balan, Mircea Neagu |
Autore | Balan Vladimir <1958-> |
Pubbl/distr/stampa | Hoboken, N.J., : John Wiley & Sons, c2011 |
Descrizione fisica | 1 online resource (212 p.) |
Disciplina | 530.14/3 |
Altri autori (Persone) | NeaguMircea <1973-> |
Soggetto topico |
Geometry, Differential
Lagrange equations Field theory (Physics) |
ISBN |
1-283-28286-0
9786613282866 1-118-14378-7 1-118-14375-2 1-118-14376-0 |
Classificazione | MAT012000 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Jet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet Γ-linear connections; 2.2 Local torsion and curvature d-tensors
2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal Γ-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism 4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics εDL1n; 5.2 Geometrical Maxwell equations on εDL1n; 5.3 Geometrical Einstein equations on εDL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moór metric of order three 6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moór metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moór metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moór metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moór metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures 7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moór metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moór metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moór metric of order four 8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four |
Record Nr. | UNINA-9910878081103321 |
Balan Vladimir <1958-> | ||
Hoboken, N.J., : John Wiley & Sons, c2011 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|