top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Jet single-time Lagrange geometry and its applications [[electronic resource] /] / Vladimir Balan, Mircea Neagu
Jet single-time Lagrange geometry and its applications [[electronic resource] /] / Vladimir Balan, Mircea Neagu
Autore Balan Vladimir <1958->
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, c2011
Descrizione fisica 1 online resource (212 p.)
Disciplina 530.14/3
530.143
Altri autori (Persone) NeaguMircea <1973->
Soggetto topico Geometry, Differential
Lagrange equations
Field theory (Physics)
Soggetto genere / forma Electronic books.
ISBN 1-283-28286-0
9786613282866
1-118-14378-7
1-118-14375-2
1-118-14376-0
Classificazione MAT012000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Jet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet Γ-linear connections; 2.2 Local torsion and curvature d-tensors
2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal Γ-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism
4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics εDL1n; 5.2 Geometrical Maxwell equations on εDL1n; 5.3 Geometrical Einstein equations on εDL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moór metric of order three
6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moór metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moór metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moór metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moór metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures
7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moór metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moór metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moór metric of order four
8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four
Record Nr. UNINA-9910139588203321
Balan Vladimir <1958->  
Hoboken, N.J., : John Wiley & Sons, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Jet single-time Lagrange geometry and its applications [[electronic resource] /] / Vladimir Balan, Mircea Neagu
Jet single-time Lagrange geometry and its applications [[electronic resource] /] / Vladimir Balan, Mircea Neagu
Autore Balan Vladimir <1958->
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, c2011
Descrizione fisica 1 online resource (212 p.)
Disciplina 530.14/3
530.143
Altri autori (Persone) NeaguMircea <1973->
Soggetto topico Geometry, Differential
Lagrange equations
Field theory (Physics)
ISBN 1-283-28286-0
9786613282866
1-118-14378-7
1-118-14375-2
1-118-14376-0
Classificazione MAT012000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Jet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet Γ-linear connections; 2.2 Local torsion and curvature d-tensors
2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal Γ-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism
4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics εDL1n; 5.2 Geometrical Maxwell equations on εDL1n; 5.3 Geometrical Einstein equations on εDL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moór metric of order three
6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moór metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moór metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moór metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moór metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures
7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moór metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moór metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moór metric of order four
8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four
Record Nr. UNINA-9910831045203321
Balan Vladimir <1958->  
Hoboken, N.J., : John Wiley & Sons, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Jet single-time Lagrange geometry and its applications / / Vladimir Balan, Mircea Neagu
Jet single-time Lagrange geometry and its applications / / Vladimir Balan, Mircea Neagu
Autore Balan Vladimir <1958->
Pubbl/distr/stampa Hoboken, N.J., : John Wiley & Sons, c2011
Descrizione fisica 1 online resource (212 p.)
Disciplina 530.14/3
Altri autori (Persone) NeaguMircea <1973->
Soggetto topico Geometry, Differential
Lagrange equations
Field theory (Physics)
ISBN 1-283-28286-0
9786613282866
1-118-14378-7
1-118-14375-2
1-118-14376-0
Classificazione MAT012000
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Jet Single-Time Lagrange Geometry and Its Applications; CONTENTS; Preface; PART I THE JET SINGLE-TIME LAGRANGE GEOMETRY; 1 Jet geometrical objects depending on a relativistic time; 1.1 d-tensors on the 1-jet space J1 (R, M); 1.2 Relativistic time-dependent semisprays. Harmonic curves; 1.3 Jet nonlinear connections. Adapted bases; 1.4 Relativistic time-dependent semisprays and jet nonlinear connections; 2 Deflection d-tensor identities in the relativistic time-dependent Lagrange geometry; 2.1 The adapted components of jet Γ-linear connections; 2.2 Local torsion and curvature d-tensors
2.3 Local Ricci identities and nonmetrical deflection d-tensors3 Local Bianchi identities in the relativistic time-dependent Lagrange geometry; 3.1 The adapted components of h-normal Γ-linear connections; 3.2 Deflection d-tensor identities and local Bianchi identities for d-connections of Cartan type; 4 The jet Riemann-Lagrange geometry of the relativistic time-dependent Lagrange spaces; 4.1 Relativistic time-dependent Lagrange spaces; 4.2 The canonical nonlinear connection; 4.3 The Cartan canonical metrical linear connection; 4.4 Relativistic time-dependent Lagrangian electromagnetism
4.4.1 The jet single-time electromagnetic field4.4.2 Geometrical Maxwell equations; 4.5 Jet relativistic time-dependent Lagrangian gravitational theory; 4.5.1 The jet single-time gravitational field; 4.5.2 Geometrical Einstein equations and conservation laws; 5 The jet single-time electrodynamics; 5.1 Riemann-Lagrange geometry on the jet single-time Lagrange space of electrodynamics εDL1n; 5.2 Geometrical Maxwell equations on εDL1n; 5.3 Geometrical Einstein equations on εDL1n; 6 Jet local single-time Finsler-Lagrange geometry for the rheonomic Berwald-Moór metric of order three
6.1 Preliminary notations and formulas6.2 The rheonomic Berwald-Moór metric of order three; 6.3 Cartan canonical linear connection, d-torsions and d-curvatures; 6.4 Geometrical field theories produced by the rheonomic Berwald-Moór metric of order three; 6.4.1 Geometrical gravitational theory; 6.4.2 Geometrical electromagnetic theory; 7 Jet local single-time Finsler-Lagrange approach for the rheonomic Berwald-Moór metric of order four; 7.1 Preliminary notations and formulas; 7.2 The rheonomic Berwald-Moór metric of order four; 7.3 Cartan canonical linear connection, d-torsions and d-curvatures
7.4 Geometrical gravitational theory produced by the rheonomic Berwald-Moór metric of order four7.5 Some physical remarks and comments; 7.5.1 On gravitational theory; 7.5.2 On electromagnetic theory; 7.6 Geometric dynamics of plasma in jet spaces with rheonomic Berwald-Moór metric of order four; 7.6.1 Introduction; 7.6.2 Generalized Lagrange geometrical approach of the non-isotropic plasma on 1-jet spaces; 7.6.3 The non-isotropic plasma as a medium geometrized by the jet rheonomic Berwald-Moór metric of order four
8 The jet local single-time Finsler-Lagrange geometry induced by the rheonomic Chernov metric of order four
Record Nr. UNINA-9910878081103321
Balan Vladimir <1958->  
Hoboken, N.J., : John Wiley & Sons, c2011
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui