Nanostructured Materials for Energy Related Applications / / edited by Saravanan Rajendran, Mu. Naushad, Subramanian Balakumar |
Edizione | [1st ed. 2019.] |
Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 |
Descrizione fisica | 1 online resource (XVI, 297 p. 108 illus., 76 illus. in color.) |
Disciplina |
577.14
650.115 |
Collana | Environmental Chemistry for a Sustainable World |
Soggetto topico |
Environmental chemistry
Nanochemistry Renewable energy resources Nanotechnology Environmental Chemistry Renewable and Green Energy |
ISBN | 3-030-04500-5 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto | 1. Recent trends in nanomaterials for sustainable energy -- 2. Recent In-situ/Operando Characterization of Lithium Sulfur Batteries -- 3. Recent Advances in Flexible Supercapacitors -- 4. Noble-Metal Free Nanoelectrocatalysts for Hydrogen Evolution Reaction -- 5. Energy saving synthesis of Mg2SiO4:RE3+ nanophosphors for solid-state lighting applications -- 6. Studies of multi-walled carbon nanotubes and their capabilities of hydrogen adsorption -- 7. Emerging Vertical Nanostructures for High-performance Supercapacitor Application -- 8. Hydrogen Production through Solar Driven Water Splitting: Cu(I) Oxide Based Semiconductor Nanoparticles as the Next Generation Photocatalysts -- 9. Application of nanoparticles in clean fuels -- 10. Biomass-derived nanomaterials -- 11. Recent Progress of Carbon Dioxide Conversion into Renewable Fuels and Chemicals using Nanomaterials. |
Record Nr. | UNINA-9910337917703321 |
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2019 | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|
Nanostructured materials for environmental applications / / Subramanian Balakumar, Valérie Keller, M. V. Shankar, editors |
Pubbl/distr/stampa | Cham, Switzerland : , : Springer, , [2021] |
Descrizione fisica | 1 online resource (641 pages) |
Disciplina | 620.1150286 |
Soggetto topico | Nanostructured materials - Environmental aspects |
ISBN | 3-030-72076-4 |
Formato | Materiale a stampa |
Livello bibliografico | Monografia |
Lingua di pubblicazione | eng |
Nota di contenuto |
Intro -- Foreword -- Acknowledgments -- Contents -- Contributors -- About the Editors -- Chapter 1: Nanostructures in Photocatalysis: Opportunities and Challenges for Environmental Applications -- 1.1 Introduction -- 1.2 Mechanics of Photocatalysis in Nanostructures -- 1.3 Synthesis of Nanostructured Photocatalysts -- 1.3.1 Sol-Gel Synthesis -- 1.3.2 Hydro-/Solvo-thermal Synthesis -- 1.3.3 Precipitation Process -- 1.3.4 Anodization Process -- 1.3.5 Electrospinning -- 1.3.6 Pechini Method -- 1.3.7 Other Methods -- 1.4 Applications -- 1.4.1 Dye Degradation -- 1.4.2 Pharmaceutical Pollutant Degradation -- 1.4.3 Plastic Degradation -- 1.4.4 CO2 Reduction -- 1.4.5 N2 Fixation -- 1.4.6 Heavy Metal Reduction -- 1.4.7 Antimicrobial Applications -- 1.5 Conclusions and Outlook -- References -- Chapter 2: Nanostructured Heterojunction (1D-0D and 2D-0D) Photocatalysts for Environmental Remediation -- 2.1 Introduction -- 2.2 Impact of Nanostructures on Material Properties -- 2.3 1D-0D Heterojunction Photocatalysts for Pollutant Degradation -- 2.3.1 Metal Oxide-Metal Oxide (1D-0D) Heterojunction Photocatalysts for Pollutant Degradation -- TiO2-MnO2 Heterojunction -- TiO2-CuO Heterojunction -- TiO2-Ag2O Heterojunction -- TiO2-ZnO Heterojunction -- 2.3.2 Metal Oxide-Metal (1D-0D) Heterojunction Photocatalysts for Pollutant Degradation -- TiO2-Ag Heterojunction -- TiO2-Au Heterojunction -- TiO2-Pt Heterojunction -- TiO2-Cu Heterojunction -- 2.4 2D-0D Heterojunction Photocatalysts for Pollutant Degradation -- 2.4.1 2D Nanosheet-Metal Oxide (2D-0D) Heterojunction Photocatalysts for Pollutant Degradation -- g-C3N4/MO Heterojunction -- GO/MO Heterojunction -- rGO/MO Heterojunction -- 2.4.2 2D Nanosheet-Metal (2D-0D) Heterojunction Photocatalysts for Pollutant Degradation -- 2.5 Summary and Future Prospects -- References.
Chapter 3: Hierarchical Nanostructures for Photocatalytic Applications -- 3.1 Basic Concepts of Hierarchical Nanostructures in Photocatalytic Field -- 3.2 Preparation Strategies -- 3.2.1 Precipitation Method -- 3.2.2 Hydrothermal Method -- 3.2.3 Solvothermal Method -- 3.2.4 Microwave Treatment -- 3.2.5 Metal-Organic Framework (MOF)-Directed Synthesis -- 3.3 Significant Applications of Hierarchical Photocatalysts -- 3.3.1 Photocatalytic Water Remediation -- 3.3.2 Photocatalytic CO2 Reduction -- 3.3.3 Photocatalytic H2 Production -- 3.4 Conclusions -- References -- Chapter 4: Nanocomposite Photocatalysts for the Degradation of Contaminants of Emerging Concerns -- 4.1 Introduction -- 4.2 Overview of Photocatalysis -- 4.3 Semiconductor Photocatalysts -- 4.4 Nanostructured Photocatalyst -- 4.5 Nanocomposite Photocatalyst -- 4.5.1 Semiconductor-Metal Composites -- Schottky Barrier Composites -- Plasmonic Composites -- 4.5.2 Semiconductor-Semiconductor Composites -- p-n Heterojunction Composites -- Z-Scheme Heterojunction Composites -- All-Solid-State Z-Scheme Heterojunction Composites -- Direct Z-Scheme Heterojunction Composites -- Other Heterojunction Composites -- 4.5.3 Semiconductor-Carbon Composites -- Semiconductor-Graphene Composites -- Semiconductor-Carbon Quantum Dot Composites -- Semiconductor-Carbon Sphere Composites -- 4.6 Summary and Outlook -- References -- Chapter 5: Sunlight-Mediated Plasmonic Photocatalysis: Mechanism and Material Prospects -- 5.1 Solar Spectrum and Photocatalysis -- 5.2 Concepts of Photocatalysis -- 5.3 Localized Surface Plasmon Resonance -- 5.4 Schottky Junction Barrier -- 5.5 Theoretical Insights into Band Structure Engineering in Semiconductors for Plasmonic Photocatalysts -- 5.6 Plasmonic Photocatalytic Materials -- 5.6.1 Ag-Metal Oxide -- 5.6.2 Au-Metal Oxide -- 5.6.3 Pt-Metal Oxide -- 5.6.4 Graphene and Noble Metals. 5.6.5 Graphitic Carbon Nitride (g-C3N4)-Based Plasmonic Photocatalysis -- 5.7 Conclusion and Future Directions -- References -- Chapter 6: Photocatalytic Efficiency of Bi-Based Aurivillius Compounds: Critical Review and Discernment of the Factors Involved -- 6.1 Introduction -- 6.2 Bi-Based Aurivillius Compounds -- 6.2.1 Bi2MO6 (M = Cr, Mo, W) -- 6.2.2 (BiO)2CO3 -- 6.2.3 Bismuth Titanate (Bi4Ti3O12) -- 6.3 Mechanism of Bi-Based Materials in Photocatalysis -- 6.4 Synthesis of Photocatalysts -- 6.4.1 Hydrothermal Method/Solvothermal Method -- 6.4.2 Sol-Gel Synthesis -- 6.4.3 Chemical Precipitation -- 6.5 Morphology Control -- 6.6 Surface Modification -- 6.7 Applications of Bi-Based Aurivillius Compounds -- 6.7.1 Degradation of Dye -- 6.7.2 Degradation of Organic (Non-Dye-Based) Pollutants -- 6.7.3 Degradation of Pharmaceutical Pollutants -- 6.7.4 Heavy Metal Reduction -- 6.7.5 Antibacterial Disinfection -- 6.8 Summary -- References -- Chapter 7: Intrinsically Conducting Polymer Nanocomposites in Shielding of Electromagnetic Pollution -- 7.1 General Introduction -- 7.2 Theoretical Aspect of EMI Shielding -- 7.3 Electromagnetic Interference Shielding of ICPs and ICP-Coated Fabrics -- 7.3.1 ICP-Coated Fabrics -- PANI and PPY-Coated Fabrics -- 7.3.2 PPy and PPY-Coated Fabrics -- 7.4 Metal-Incorporated ICPs -- 7.4.1 Silver-Incorporated ICPs -- 7.4.2 Fe-, Co- and Cu-Incorporated ICPs -- 7.4.3 Alloys -- 7.5 Nanocarbon-Based ICP Nanocomposites -- 7.5.1 PANI/CNT Composites in EMI Shielding Applications -- 7.5.2 PANI/Graphene and PPy/Graphene Nanocomposites in EMI Shielding Applications -- 7.6 ICPs Nanocomposites Consisting Dielectric/Magnetic/Conducting Materials -- 7.7 Core@Shell Materials with Single and Dual Interface in EMI Shielding Applications -- 7.8 Summary -- References. Chapter 8: Nanostructuring of Hybrid Materials Using Wrapping Approach to Enhance the Efficiency of Visible Light-Responsive Semiconductor Photocatalyst -- 8.1 Introduction -- 8.2 Synthesis of Nanostructuring of Hybrid Materials Using Wrapping Approach -- 8.2.1 Preparation of Graphene Oxide Encapsulated TiO2 Core/Shell Microspheres -- 8.2.2 Synthesis of GP Strongly Wrapped TiO2 Photocatalyst -- 8.2.3 Fabrication of rGO-Wrapped TiO2 Nanofibers (TNFs) -- 8.2.4 Synthesis of GO/Bi2WO6 Composites -- 8.2.5 Synthesis of W2C@C/HTMs Heterojunction -- 8.2.6 Synthesis of Wrinkled Graphene-Wrapped TiO2 Nanotubes -- 8.3 Photocatalytic Application -- 8.3.1 Photocatalytic Degradation of Organic Pollutants -- 8.3.2 Photocatalytic Hydrogen Production -- 8.4 Future Direction -- 8.5 Conclusion -- References -- Chapter 9: Metal-Organic Frameworks (MOFs) with Hierarchical Structures for Visible Light Photocatalysis -- 9.1 Introduction -- 9.2 Rational Fabrication of MOFs Photocatalyst -- 9.3 Various Methods for MOFs Synthesis -- 9.4 MOFs for Visible Light Photocatalysis -- 9.5 Visible Light Photocatalysis of MOF-Derived Hierarchical Structured Metal Oxides -- 9.6 Visible Light Photocatalysis of MOF-Derived Hierarchical Structured Metal Sulfides -- 9.7 Conclusion -- References -- Chapter 10: Soil Remediation by Zero-Valent Iron Nanoparticles for Organic Pollutant Elimination -- 10.1 Introduction -- 10.2 Iron Nanotechnology -- 10.2.1 Iron Nanoparticles Synthesis -- 10.2.2 Iron Nanoparticle's Characteristics and Pollutant Removal Mechanism -- 10.3 Iron Nanoparticles Application for the Organic-Polluted Soil Remediation -- 10.3.1 Applications -- 10.3.2 Challenges Ahead -- 10.4 Conclusions -- References -- Chapter 11: Black TiO2: An Emerging Photocatalyst and Its Applications -- 11.1 Introduction -- 11.2 Black TiO2 Preparation Methods -- 11.2.1 Thermal Treatment. High-Pressure Pure Hydrogen Treatment -- Ambient or Low-Pressure Pure Hydrogen Treatment -- Ambient Hydrogen-Argon Treatment -- Ambient Hydrogen-Nitrogen Treatment -- Ambient Argon Treatment -- Argon-Nitrogen Treatment -- 11.2.2 Plasma Treatment -- 11.2.3 Chemical Reduction -- Metal Reduction -- Reduction by Hydride Slats -- 11.2.4 Electrochemical Synthesis -- 11.2.5 Pulsed Laser Ablation -- 11.2.6 Other Methods -- Ionothermal Synthesis -- Imidazole Reduction -- Proton Implantation -- Si Quantum Dot (QD)-Assisted Chemical Etching -- 11.3 Black TiO2 Properties -- 11.3.1 Existence of Surface Disorders -- 11.3.2 Existence of Ti3+ Centers and Oxygen Vacancies -- 11.3.3 Existence of Surface Functional Groups -- 11.3.4 Modifications in the Band Structure, Color, and Electron Trap Sites -- 11.4 Applications of Black Titania in Photocatalysis -- 11.4.1 Pollutant Removal -- 11.4.2 Hydrogen Production -- 11.4.3 Photo Reduction of CO2 -- 11.5 Conclusions and Future Outlook -- References -- Chapter 12: Nanomaterials for Photocatalytic Decomposition of Endocrine Disruptors in Water -- 12.1 Introduction -- 12.2 Single Component or Unary Nanostructures -- 12.3 Two Component or Binary Nanostructures -- 12.4 Ternary and Multi-component Nanostructures -- 12.5 Summary and Perspectives -- References -- Chapter 13: Carbonaceous Nanomaterials for Environmental Remediation -- 13.1 Introduction -- 13.2 Carbonaceous Nanomaterials -- 13.2.1 Types of Carbonaceous Nanomaterials -- 13.2.2 Properties -- 13.2.3 Synthesis -- 13.3 Carbonaceous Nanomaterials for Water Decontamination -- 13.3.1 Adsorption -- Degradation of Organic Pollutants -- Degradation of Antibiotics -- Degradation of Pesticides -- Degradation of Dyes -- Degradation of Other Organic Pollutants -- Removal of Inorganic Metal/Metalloid Cations -- 13.3.2 Photocatalysis -- 13.3.3 Membrane. 13.4 Carbonaceous Nanomaterials for Removal of Gas Pollutants. |
Record Nr. | UNINA-9910495192203321 |
Cham, Switzerland : , : Springer, , [2021] | ||
Materiale a stampa | ||
Lo trovi qui: Univ. Federico II | ||
|