Infrastructure Robotics : Methodologies, Robotic Systems and Applications
| Infrastructure Robotics : Methodologies, Robotic Systems and Applications |
| Autore | Liu Dikai |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (435 pages) |
| Altri autori (Persone) |
BalaguerCarlos
DissanayakeGamini KovacMirko |
| Collana | IEEE Press Series on Systems Science and Engineering Series |
| Soggetto topico | Robotics |
| ISBN |
1-394-16285-5
1-394-16287-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Acronyms -- Part I Methodologies -- Chapter 1 Infrastructure Robotics: An Introduction -- 1.1 Infrastructure Inspection and Maintenance -- 1.2 Infrastructure Robotics -- 1.2.1 Inspection and Maintenance of Steel Bridges -- 1.2.2 Climbing and Wheeled Robots for Inspection of Truss Structures -- 1.2.3 Robots for Underwater Infrastructure Maintenance -- 1.3 Considerations in Infrastructure Robotics Research -- 1.4 Opportunities and Challenges -- 1.5 Concluding Remarks -- Bibliography -- Chapter 2 Design of Infrastructure Robotic Systems -- 2.1 Special Features of Infrastructure -- 2.2 The Design Process -- 2.3 Types of Robots and Their Design and Operation -- 2.4 Software System Design -- 2.5 An Example: Development of the CROC Design Concept -- 2.6 Some Other Examples -- 2.7 Actuator Systems -- 2.8 Concluding Remarks -- Bibliography -- Chapter 3 Perception in Complex and Unstructured Infrastructure Environments -- 3.1 Introduction -- 3.2 Sensor Description -- 3.2.1 2D LiDAR -- 3.2.2 3D LiDAR -- 3.2.3 Sonar -- 3.2.4 Monocular Camera -- 3.2.5 Stereo Camera -- 3.2.6 GRB‐D Camera -- 3.3 Problem Description -- 3.4 Theoretical Foundations -- 3.4.1 Extended Kalman Filter -- 3.4.2 Nonlinear Least Squares -- 3.4.3 Environment Representations -- 3.4.4 Mapping Techniques -- 3.4.5 Localization Techniques -- 3.4.6 SLAM Techniques -- 3.5 Implementation -- 3.5.1 Localization -- 3.5.2 SLAM -- 3.6 Case Studies -- 3.6.1 Mapping in Confined Space -- 3.6.2 Localization in Confined Space -- 3.6.3 SLAM in Underwater Bridge Environment -- 3.7 Conclusion and Discussion -- Bibliography -- Chapter 4 Machine Learning and Computer Vision Applications in Civil Infrastructure Inspection and Monitoring -- 4.1 Introduction -- 4.2 GNN‐Based Pipe Failure Prediction -- 4.2.1 Background.
4.2.2 Problem Formulation -- 4.2.3 Data Preprocessing -- 4.2.4 GNN Learning -- 4.2.5 Failure Pattern Learning -- 4.2.6 Failure Predictor -- 4.2.7 Experimental Study -- 4.3 Computer Vision‐Based Signal Aspect Transition Detection -- 4.3.1 Background -- 4.3.2 Signal Detection Model -- 4.3.3 Track Detection Model -- 4.3.4 Optimization for Target Locating -- 4.4 Conclusion and Discussion -- Bibliography -- Chapter 5 Coverage Planning and Motion Planning of Intelligent Robots for Civil Infrastructure Maintenance -- 5.1 Introduction to Coverage and Motion Planning -- 5.2 Coverage Planning Algorithms for a Single Robot -- 5.2.1 An Offline Coverage Planning Algorithm -- 5.2.2 A Real‐Time Coverage Planning Algorithm -- 5.3 Coverage Planning Algorithms for Multiple Robots -- 5.3.1 Base Placement Optimization -- 5.3.2 Area Partitioning and Allocation -- 5.3.3 Adaptive Coverage Path Planning -- 5.4 Conclusion -- Bibliography -- Chapter 6 Methodologies in Physical Human-Robot Collaboration for Infrastructure Maintenance -- 6.1 Introduction -- 6.2 Autonomy, Tele‐Operation, and pHRC -- 6.2.1 Autonomous Robots -- 6.2.2 Teleoperated Robots -- 6.2.3 Physical Human-Robot Collaboration -- 6.3 Control Methods -- 6.3.1 Motion Control -- 6.3.2 Force Control -- 6.4 Adaptive Assistance Paradigms -- 6.4.1 Manually Adapted Assistance -- 6.4.2 Assistance‐As‐Needed Paradigms -- 6.4.3 Performance‐Based Assistance -- 6.4.4 Physiology‐Based Assistance -- 6.5 Safety Framework for pHRC -- 6.6 Performance‐Based Role Change -- 6.7 Case Study -- 6.8 Discussion -- Acknowledgements -- Bibliography -- Part II Robotic System Design and Applications -- Chapter 7 Steel Bridge Climbing Robot Design and Development -- 7.1 Introduction -- 7.2 Recent Climbing Robot Platforms Developed by the ARA Lab -- 7.3 Overall Design -- 7.3.1 Mechanical Design and Analysis -- 7.4 Overall Control Architecture. 7.4.1 Control System Framework -- 7.5 Experiment Results -- 7.5.1 Switching Control -- 7.5.2 Robot Navigation in Mobile and Worming Transformation -- 7.5.3 Robot Deployment -- 7.6 Conclusion and Future Work -- Bibliography -- Chapter 8 Underwater Robots for Cleaning and Inspection of Underwater Structures -- 8.1 Introduction to Maintenance of Underwater Structures -- 8.2 Robot System Design -- 8.2.1 Hull Design and Maneuvering System -- 8.2.2 Robot Arms for Docking and Water‐Jet Cleaning -- 8.3 Sensing and Perception in Underwater Environments -- 8.3.1 Underwater Simultaneous Localization and Mapping (SLAM) Around Bridge Piles -- 8.3.2 Marine Growth Identification -- 8.4 Software Architecture -- 8.5 Robot Navigation, Motion Planning and System Integration -- 8.5.1 Localization and Navigation in Open Water -- 8.5.2 System Integration -- 8.6 Testing in a Lab Setup and Trials in the Field -- 8.6.1 Operation Procedure -- 8.6.2 Autonomous Navigation in Narrow Environments -- 8.6.3 Vision‐Based Marine Growth Removing Process -- 8.6.4 Inspection and Marine Growth Identification -- 8.7 Reflection and Lessons Learned -- 8.8 Conclusion and Future Work -- Acknowledgments -- Bibliography -- Chapter 9 Tunnel Structural Inspection and Assessment Using an Autonomous Robotic System -- 9.1 Introduction -- 9.2 ROBO‐SPECT Project -- 9.2.1 Robotic System -- 9.2.2 Intelligent Global Controller -- 9.2.3 Ground Control Station -- 9.2.4 Structural Assessment Tool -- 9.3 Inspection Procedure -- 9.4 Extended Kalman Filter for Mobile Vehicle Localization -- 9.5 Mobile Vehicle Navigation -- 9.6 Field Experimental Results -- 9.7 Conclusion -- Bibliography -- Chapter 10 BADGER: Intelligent Robotic System for Underground Construction -- 10.1 Introduction -- 10.2 Boring Systems and Methods -- 10.2.1 Directional Drilling Methods -- 10.2.2 Drilling Robotic Systems. 10.3 Main Drawbacks -- 10.4 BADGER System and Components -- 10.4.1 Main Systems Description -- 10.4.2 BADGER Operation -- 10.5 Future Trends -- Bibliography -- Chapter 11 Robots for Underground Pipe Condition Assessment -- 11.1 Introduction to Ferro‐Magnetic Pipeline Maintenance -- 11.1.1 NDT Inspection Taxonomy -- 11.2 Inspection Robots -- 11.2.1 Robot Kinematics and Locomotion -- 11.3 PEC Sensing for Ferromagnetic Wall Thickness Mapping -- 11.3.1 Hardware and Software System Architecture -- 11.4 Gaussian Processes for Spatial Regression from Sampled Inspection Data -- 11.4.1 Gaussian Processes -- 11.5 Field Robotic CA Inspection Results -- 11.6 Concluding Remarks -- Bibliography -- Chapter 12 Robotics and Sensing for Condition Assessment of Wastewater Pipes -- 12.1 Introduction -- 12.2 Nondestructive Sensing System for Condition Assessment of Sewer Walls -- 12.3 Robotic Tool for Field Deployment -- 12.4 Laboratory Evaluation -- 12.5 Field Deployment and Evaluation -- 12.6 Lessons Learned and Future Directions -- 12.7 Concluding Remarks -- Bibliography -- Chapter 13 A Climbing Robot for Maintenance Operations in Confined Spaces -- 13.1 Introduction -- 13.2 Robot Design -- 13.3 Methodologies -- 13.3.1 Perception -- 13.3.2 Control -- 13.3.3 Planning of Robot Body Motion -- 13.4 Experiments and Results -- 13.4.1 Experiment Setup -- 13.4.2 Lab Test Results -- 13.4.3 Field Trials in a Steel Bridge -- 13.5 Discussion -- 13.6 Conclusion -- Bibliography -- Chapter 14 Multi‐UAV Systems for Inspection of Industrial and Public Infrastructures -- 14.1 Introduction -- 14.2 Multi‐UAV Inspection of Electrical Power Systems -- 14.2.1 Use Cases -- 14.2.2 Architecture -- 14.3 Inspection Planning -- 14.3.1 Vehicle Routing Problem -- 14.4 Onboard Online Semantic Mapping -- 14.4.1 GNSS‐Endowed Mapping System. 14.4.2 Reflectivity and Geometry‐Based Semantic Classification -- 14.4.3 Validation -- 14.5 Conclusion -- Bibliography -- Chapter 15 Robotic Platforms for Inspection of Oil Refineries -- 15.1 Refining Oil for Fuels and Petrochemical Basics -- 15.2 The Inspection Process -- 15.3 Inspection and Mechanical Integrity of Oil Refinery Components -- 15.3.1 Liquid Storage Tank Inspection -- 15.3.2 Pressurized Vessels Inspection -- 15.3.3 Process Pipping -- 15.3.4 Heat Exchanger Bundles -- 15.4 Plant Operations, Surveillance, Maintenance Activities, and Others -- 15.4.1 Surveillance, Operations, and Maintenance of Oil and Gas Refineries -- 15.4.2 Safety and Security -- 15.4.3 Utilities and Support Activities -- 15.5 Robotic Systems for Inspection -- 15.5.1 Robotics for Storage Tanks -- 15.5.2 Robotics for Pressure Vessels -- 15.5.3 Robotics for Process Piping -- 15.5.4 Robotics Heat Exchanger Bundles -- 15.6 Robotics for Plant Operations, Surveillance, Maintenance, and Other Related Activities -- 15.6.1 Operations, Surveillance, and Maintenance of Oil and Gas Refineries with Robotic Systems -- 15.6.2 Safety and Security Robotics -- 15.6.3 Robotics for Utilities and Support Activities -- 15.7 Conclusion -- Chapter 16 Drone‐Based Solar Cell Inspection With Autonomous Deep Learning -- 16.1 Introduction -- 16.1.1 Motivation -- 16.1.2 Related Works -- 16.1.3 Scope -- 16.2 Aerial Robot and Detection Framework -- 16.2.1 Simulation Environment -- 16.2.2 Solar Panel Detection -- 16.2.3 Aerial Robot Trajectory -- 16.2.4 Sensory Instrumentation for Aerial Robot -- 16.3 Learning Framework -- 16.3.1 Dataset Preparation -- 16.3.2 CNN Architecture -- 16.3.3 Performance Evaluation Measures -- 16.4 Conclusion -- Acknowledgments -- Bibliography -- Chapter 17 Aerial Repair and Aerial Additive Manufacturing. 17.1 Review of State of the Art in Additive Manufacturing at Architectural Scales. |
| Record Nr. | UNINA-9910830020403321 |
Liu Dikai
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Infrastructure Robotics : Methodologies, Robotic Systems and Applications
| Infrastructure Robotics : Methodologies, Robotic Systems and Applications |
| Autore | Liu Dikai |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (435 pages) |
| Disciplina | 629.892 |
| Altri autori (Persone) |
BalaguerCarlos
DissanayakeGamini KovacMirko |
| Collana | IEEE Press Series on Systems Science and Engineering Series |
| Soggetto topico | Robotics |
| ISBN |
9781394162857
1394162855 9781394162871 1394162871 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- About the Editors -- Preface -- Acronyms -- Part I Methodologies -- Chapter 1 Infrastructure Robotics: An Introduction -- 1.1 Infrastructure Inspection and Maintenance -- 1.2 Infrastructure Robotics -- 1.2.1 Inspection and Maintenance of Steel Bridges -- 1.2.2 Climbing and Wheeled Robots for Inspection of Truss Structures -- 1.2.3 Robots for Underwater Infrastructure Maintenance -- 1.3 Considerations in Infrastructure Robotics Research -- 1.4 Opportunities and Challenges -- 1.5 Concluding Remarks -- Bibliography -- Chapter 2 Design of Infrastructure Robotic Systems -- 2.1 Special Features of Infrastructure -- 2.2 The Design Process -- 2.3 Types of Robots and Their Design and Operation -- 2.4 Software System Design -- 2.5 An Example: Development of the CROC Design Concept -- 2.6 Some Other Examples -- 2.7 Actuator Systems -- 2.8 Concluding Remarks -- Bibliography -- Chapter 3 Perception in Complex and Unstructured Infrastructure Environments -- 3.1 Introduction -- 3.2 Sensor Description -- 3.2.1 2D LiDAR -- 3.2.2 3D LiDAR -- 3.2.3 Sonar -- 3.2.4 Monocular Camera -- 3.2.5 Stereo Camera -- 3.2.6 GRB‐D Camera -- 3.3 Problem Description -- 3.4 Theoretical Foundations -- 3.4.1 Extended Kalman Filter -- 3.4.2 Nonlinear Least Squares -- 3.4.3 Environment Representations -- 3.4.4 Mapping Techniques -- 3.4.5 Localization Techniques -- 3.4.6 SLAM Techniques -- 3.5 Implementation -- 3.5.1 Localization -- 3.5.2 SLAM -- 3.6 Case Studies -- 3.6.1 Mapping in Confined Space -- 3.6.2 Localization in Confined Space -- 3.6.3 SLAM in Underwater Bridge Environment -- 3.7 Conclusion and Discussion -- Bibliography -- Chapter 4 Machine Learning and Computer Vision Applications in Civil Infrastructure Inspection and Monitoring -- 4.1 Introduction -- 4.2 GNN‐Based Pipe Failure Prediction -- 4.2.1 Background.
4.2.2 Problem Formulation -- 4.2.3 Data Preprocessing -- 4.2.4 GNN Learning -- 4.2.5 Failure Pattern Learning -- 4.2.6 Failure Predictor -- 4.2.7 Experimental Study -- 4.3 Computer Vision‐Based Signal Aspect Transition Detection -- 4.3.1 Background -- 4.3.2 Signal Detection Model -- 4.3.3 Track Detection Model -- 4.3.4 Optimization for Target Locating -- 4.4 Conclusion and Discussion -- Bibliography -- Chapter 5 Coverage Planning and Motion Planning of Intelligent Robots for Civil Infrastructure Maintenance -- 5.1 Introduction to Coverage and Motion Planning -- 5.2 Coverage Planning Algorithms for a Single Robot -- 5.2.1 An Offline Coverage Planning Algorithm -- 5.2.2 A Real‐Time Coverage Planning Algorithm -- 5.3 Coverage Planning Algorithms for Multiple Robots -- 5.3.1 Base Placement Optimization -- 5.3.2 Area Partitioning and Allocation -- 5.3.3 Adaptive Coverage Path Planning -- 5.4 Conclusion -- Bibliography -- Chapter 6 Methodologies in Physical Human-Robot Collaboration for Infrastructure Maintenance -- 6.1 Introduction -- 6.2 Autonomy, Tele‐Operation, and pHRC -- 6.2.1 Autonomous Robots -- 6.2.2 Teleoperated Robots -- 6.2.3 Physical Human-Robot Collaboration -- 6.3 Control Methods -- 6.3.1 Motion Control -- 6.3.2 Force Control -- 6.4 Adaptive Assistance Paradigms -- 6.4.1 Manually Adapted Assistance -- 6.4.2 Assistance‐As‐Needed Paradigms -- 6.4.3 Performance‐Based Assistance -- 6.4.4 Physiology‐Based Assistance -- 6.5 Safety Framework for pHRC -- 6.6 Performance‐Based Role Change -- 6.7 Case Study -- 6.8 Discussion -- Acknowledgements -- Bibliography -- Part II Robotic System Design and Applications -- Chapter 7 Steel Bridge Climbing Robot Design and Development -- 7.1 Introduction -- 7.2 Recent Climbing Robot Platforms Developed by the ARA Lab -- 7.3 Overall Design -- 7.3.1 Mechanical Design and Analysis -- 7.4 Overall Control Architecture. 7.4.1 Control System Framework -- 7.5 Experiment Results -- 7.5.1 Switching Control -- 7.5.2 Robot Navigation in Mobile and Worming Transformation -- 7.5.3 Robot Deployment -- 7.6 Conclusion and Future Work -- Bibliography -- Chapter 8 Underwater Robots for Cleaning and Inspection of Underwater Structures -- 8.1 Introduction to Maintenance of Underwater Structures -- 8.2 Robot System Design -- 8.2.1 Hull Design and Maneuvering System -- 8.2.2 Robot Arms for Docking and Water‐Jet Cleaning -- 8.3 Sensing and Perception in Underwater Environments -- 8.3.1 Underwater Simultaneous Localization and Mapping (SLAM) Around Bridge Piles -- 8.3.2 Marine Growth Identification -- 8.4 Software Architecture -- 8.5 Robot Navigation, Motion Planning and System Integration -- 8.5.1 Localization and Navigation in Open Water -- 8.5.2 System Integration -- 8.6 Testing in a Lab Setup and Trials in the Field -- 8.6.1 Operation Procedure -- 8.6.2 Autonomous Navigation in Narrow Environments -- 8.6.3 Vision‐Based Marine Growth Removing Process -- 8.6.4 Inspection and Marine Growth Identification -- 8.7 Reflection and Lessons Learned -- 8.8 Conclusion and Future Work -- Acknowledgments -- Bibliography -- Chapter 9 Tunnel Structural Inspection and Assessment Using an Autonomous Robotic System -- 9.1 Introduction -- 9.2 ROBO‐SPECT Project -- 9.2.1 Robotic System -- 9.2.2 Intelligent Global Controller -- 9.2.3 Ground Control Station -- 9.2.4 Structural Assessment Tool -- 9.3 Inspection Procedure -- 9.4 Extended Kalman Filter for Mobile Vehicle Localization -- 9.5 Mobile Vehicle Navigation -- 9.6 Field Experimental Results -- 9.7 Conclusion -- Bibliography -- Chapter 10 BADGER: Intelligent Robotic System for Underground Construction -- 10.1 Introduction -- 10.2 Boring Systems and Methods -- 10.2.1 Directional Drilling Methods -- 10.2.2 Drilling Robotic Systems. 10.3 Main Drawbacks -- 10.4 BADGER System and Components -- 10.4.1 Main Systems Description -- 10.4.2 BADGER Operation -- 10.5 Future Trends -- Bibliography -- Chapter 11 Robots for Underground Pipe Condition Assessment -- 11.1 Introduction to Ferro‐Magnetic Pipeline Maintenance -- 11.1.1 NDT Inspection Taxonomy -- 11.2 Inspection Robots -- 11.2.1 Robot Kinematics and Locomotion -- 11.3 PEC Sensing for Ferromagnetic Wall Thickness Mapping -- 11.3.1 Hardware and Software System Architecture -- 11.4 Gaussian Processes for Spatial Regression from Sampled Inspection Data -- 11.4.1 Gaussian Processes -- 11.5 Field Robotic CA Inspection Results -- 11.6 Concluding Remarks -- Bibliography -- Chapter 12 Robotics and Sensing for Condition Assessment of Wastewater Pipes -- 12.1 Introduction -- 12.2 Nondestructive Sensing System for Condition Assessment of Sewer Walls -- 12.3 Robotic Tool for Field Deployment -- 12.4 Laboratory Evaluation -- 12.5 Field Deployment and Evaluation -- 12.6 Lessons Learned and Future Directions -- 12.7 Concluding Remarks -- Bibliography -- Chapter 13 A Climbing Robot for Maintenance Operations in Confined Spaces -- 13.1 Introduction -- 13.2 Robot Design -- 13.3 Methodologies -- 13.3.1 Perception -- 13.3.2 Control -- 13.3.3 Planning of Robot Body Motion -- 13.4 Experiments and Results -- 13.4.1 Experiment Setup -- 13.4.2 Lab Test Results -- 13.4.3 Field Trials in a Steel Bridge -- 13.5 Discussion -- 13.6 Conclusion -- Bibliography -- Chapter 14 Multi‐UAV Systems for Inspection of Industrial and Public Infrastructures -- 14.1 Introduction -- 14.2 Multi‐UAV Inspection of Electrical Power Systems -- 14.2.1 Use Cases -- 14.2.2 Architecture -- 14.3 Inspection Planning -- 14.3.1 Vehicle Routing Problem -- 14.4 Onboard Online Semantic Mapping -- 14.4.1 GNSS‐Endowed Mapping System. 14.4.2 Reflectivity and Geometry‐Based Semantic Classification -- 14.4.3 Validation -- 14.5 Conclusion -- Bibliography -- Chapter 15 Robotic Platforms for Inspection of Oil Refineries -- 15.1 Refining Oil for Fuels and Petrochemical Basics -- 15.2 The Inspection Process -- 15.3 Inspection and Mechanical Integrity of Oil Refinery Components -- 15.3.1 Liquid Storage Tank Inspection -- 15.3.2 Pressurized Vessels Inspection -- 15.3.3 Process Pipping -- 15.3.4 Heat Exchanger Bundles -- 15.4 Plant Operations, Surveillance, Maintenance Activities, and Others -- 15.4.1 Surveillance, Operations, and Maintenance of Oil and Gas Refineries -- 15.4.2 Safety and Security -- 15.4.3 Utilities and Support Activities -- 15.5 Robotic Systems for Inspection -- 15.5.1 Robotics for Storage Tanks -- 15.5.2 Robotics for Pressure Vessels -- 15.5.3 Robotics for Process Piping -- 15.5.4 Robotics Heat Exchanger Bundles -- 15.6 Robotics for Plant Operations, Surveillance, Maintenance, and Other Related Activities -- 15.6.1 Operations, Surveillance, and Maintenance of Oil and Gas Refineries with Robotic Systems -- 15.6.2 Safety and Security Robotics -- 15.6.3 Robotics for Utilities and Support Activities -- 15.7 Conclusion -- Chapter 16 Drone‐Based Solar Cell Inspection With Autonomous Deep Learning -- 16.1 Introduction -- 16.1.1 Motivation -- 16.1.2 Related Works -- 16.1.3 Scope -- 16.2 Aerial Robot and Detection Framework -- 16.2.1 Simulation Environment -- 16.2.2 Solar Panel Detection -- 16.2.3 Aerial Robot Trajectory -- 16.2.4 Sensory Instrumentation for Aerial Robot -- 16.3 Learning Framework -- 16.3.1 Dataset Preparation -- 16.3.2 CNN Architecture -- 16.3.3 Performance Evaluation Measures -- 16.4 Conclusion -- Acknowledgments -- Bibliography -- Chapter 17 Aerial Repair and Aerial Additive Manufacturing. 17.1 Review of State of the Art in Additive Manufacturing at Architectural Scales. |
| Record Nr. | UNINA-9911018914703321 |
Liu Dikai
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Robotics and Automation in Construction / / edited by Carlos Balaguer, Mohamed Abderrahim
| Robotics and Automation in Construction / / edited by Carlos Balaguer, Mohamed Abderrahim |
| Autore | Balaguer Carlos |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | IntechOpen, 2008 |
| Descrizione fisica | 1 online resource (414 pages) |
| Disciplina | 670.427 |
| Soggetto topico | Automation |
| Soggetto non controllato | Automatic control engineering |
| ISBN | 953-51-5736-1 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910137703003321 |
Balaguer Carlos
|
||
| IntechOpen, 2008 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||