top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers, Part II / / edited by Spyridon Bakas, Alessandro Crimi, Ujjwal Baid, Sylwia Malec, Monika Pytlarz, Bhakti Baheti, Maximilian Zenk, Reuben Dorent
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers, Part II / / edited by Spyridon Bakas, Alessandro Crimi, Ujjwal Baid, Sylwia Malec, Monika Pytlarz, Bhakti Baheti, Maximilian Zenk, Reuben Dorent
Autore Bakas Spyridon
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (256 pages)
Disciplina 616.8
Altri autori (Persone) CrimiAlessandro
BaidUjjwal
MalecSylwia
PytlarzMonika
BahetiBhakti
ZenkMaximilian
DorentReuben
Collana Lecture Notes in Computer Science
Soggetto topico Computer vision
Medical informatics
Social sciences - Data processing
Application software
Education - Data processing
Artificial intelligence
Computer Vision
Health Informatics
Computer Application in Social and Behavioral Sciences
Computer and Information Systems Applications
Computers and Education
Artificial Intelligence
ISBN 3-031-44153-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applying Quadratic Penalty Method for Intensity-based Deformable Image Registration on BraTS-Reg Challenge 2022 -- WSSAMNet: Weakly Supervised Semantic Attentive Medical Image Registration Network -- Self-supervised iRegNet for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients -- 3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast MRI Registration in Brain Tumors -- Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive Learning -- Koos Classification of Vestibular Schwannoma via Image Translation-Based Unsupervised Cross-Modality Domain Adaptation -- MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation -- An Unpaired Cross-modality Segmentation Framework Using Data Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular Schwannoma and Cochlea.-Weakly Unsupervised Domain Adaptation for Vestibular Schwannoma Segmentation -- Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma and Cochlea Segmentation -- Enhancing Data Diversity for Self-training Based Unsupervised Cross-modality Vestibular Schwannoma and Cochlea Segmentation -- Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation -- A Local Score Strategy for Weight Aggregation in Federated Learning -- Ensemble Outperforms Single Models in Brain Tumor Segmentation -- FeTS Challenge 2022 Task 1: Implementing FedMGDA+ and a new partitioning -- Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning -- Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation -- Robust Learning Protocol for Federated Tumor Segmentation Challenge -- Model Aggregation for Federated Learning Considering Non-IID and Imbalanced Data Distribution -- FedPIDAvg: A PID controller inspired aggregation method for Federated Learning -- Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation -- Experimenting FedML and NVFLARE for Federated Tumor Segmentation Challenge.
Record Nr. UNINA-9910831012003321
Bakas Spyridon  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers, Part II / / edited by Spyridon Bakas, Alessandro Crimi, Ujjwal Baid, Sylwia Malec, Monika Pytlarz, Bhakti Baheti, Maximilian Zenk, Reuben Dorent
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries [[electronic resource] ] : 8th International Workshop, BrainLes 2022, Held in Conjunction with MICCAI 2022, Singapore, September 18, 2022, Revised Selected Papers, Part II / / edited by Spyridon Bakas, Alessandro Crimi, Ujjwal Baid, Sylwia Malec, Monika Pytlarz, Bhakti Baheti, Maximilian Zenk, Reuben Dorent
Autore Bakas Spyridon
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (256 pages)
Disciplina 616.8
Altri autori (Persone) CrimiAlessandro
BaidUjjwal
MalecSylwia
PytlarzMonika
BahetiBhakti
ZenkMaximilian
DorentReuben
Collana Lecture Notes in Computer Science
Soggetto topico Computer vision
Medical informatics
Social sciences - Data processing
Application software
Education - Data processing
Artificial intelligence
Computer Vision
Health Informatics
Computer Application in Social and Behavioral Sciences
Computer and Information Systems Applications
Computers and Education
Artificial Intelligence
ISBN 3-031-44153-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Applying Quadratic Penalty Method for Intensity-based Deformable Image Registration on BraTS-Reg Challenge 2022 -- WSSAMNet: Weakly Supervised Semantic Attentive Medical Image Registration Network -- Self-supervised iRegNet for the Registration of Longitudinal Brain MRI of Diffuse Glioma Patients -- 3D Inception-Based TransMorph: Pre- and Post-operative Multi-contrast MRI Registration in Brain Tumors -- Unsupervised Cross-Modality Domain Adaptation for Vestibular Schwannoma Segmentation and Koos Grade Prediction based on Semi-Supervised Contrastive Learning -- Koos Classification of Vestibular Schwannoma via Image Translation-Based Unsupervised Cross-Modality Domain Adaptation -- MS-MT: Multi-Scale Mean Teacher with Contrastive Unpaired Translation for Cross-Modality Vestibular Schwannoma and Cochlea Segmentation -- An Unpaired Cross-modality Segmentation Framework Using Data Augmentation and Hybrid Convolutional Networks for Segmenting Vestibular Schwannoma and Cochlea.-Weakly Unsupervised Domain Adaptation for Vestibular Schwannoma Segmentation -- Multi-view Cross-Modality MR Image Translation for Vestibular Schwannoma and Cochlea Segmentation -- Enhancing Data Diversity for Self-training Based Unsupervised Cross-modality Vestibular Schwannoma and Cochlea Segmentation -- Regularized Weight Aggregation in Networked Federated Learning for Glioblastoma Segmentation -- A Local Score Strategy for Weight Aggregation in Federated Learning -- Ensemble Outperforms Single Models in Brain Tumor Segmentation -- FeTS Challenge 2022 Task 1: Implementing FedMGDA+ and a new partitioning -- Efficient Federated Tumor Segmentation via Parameter Distance Weighted Aggregation and Client Pruning -- Hybrid Window Attention Based Transformer Architecture for Brain Tumor Segmentation -- Robust Learning Protocol for Federated Tumor Segmentation Challenge -- Model Aggregation for Federated Learning Considering Non-IID and Imbalanced Data Distribution -- FedPIDAvg: A PID controller inspired aggregation method for Federated Learning -- Federated Evaluation of nnU-Nets Enhanced with Domain Knowledge for Brain Tumor Segmentation -- Experimenting FedML and NVFLARE for Federated Tumor Segmentation Challenge.
Record Nr. UNISA-996585471703316
Bakas Spyridon  
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui