Autonomous Marine Vehicles Planning and Control
| Autonomous Marine Vehicles Planning and Control |
| Autore | Bai Yong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (505 pages) |
| Altri autori (Persone) | ZhaoLiang |
| ISBN |
1-394-35507-6
1-394-35505-X |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Introduction -- 1.1 Overview -- 1.2 System Structure -- 1.3 Mathematical Model of a USV -- 1.4 Maritime Applications -- 1.5 Motivation of this Book -- References -- Chapter 2 Automatic Control Module -- 2.1 Origin and Development -- 2.2 Common Control System Development -- 2.2.1 Dynamic Positioning and Position Mooring Systems -- 2.2.1.1 Dynamic Positioning Control System -- 2.2.1.2 Position Mooring Control System -- 2.2.2 Waypoint Tracking and Path-Following Control Systems -- 2.2.2.1 Waypoint Tracking Control System -- 2.2.2.2 Path-Following Control System -- 2.3 Advanced Control System Development -- 2.3.1 Linear Quadratic Optimal Control -- 2.3.2 State Feedback Linearization -- 2.3.2.1 Decoupling in the BODY Frame (Velocity Control) -- 2.3.2.2 Decoupling in the NED Frame (Position and Attitude Control) -- 2.3.3 Integrator Backstepping Control -- 2.3.4 Sliding-Mode Control -- 2.3.4.1 SISO Sliding-Mode Control -- 2.3.4.2 Sliding-Mode Control Using the Eigenvalue Decomposition -- References -- Chapter 3 Perception and Sensing Module -- 3.1 Low-Pass and Notch Filtering -- 3.1.1 Low-Pass Filtering -- 3.1.2 Cascaded Low-Pass and Notch Filtering -- 3.2 Fixed Gain Observer Design -- 3.2.1 Observability -- 3.2.2 Luenberger Observer -- 3.2.3 Case Study: Luenberger Observer for Heading Autopilots Using Only Compass Measurements -- 3.3 Kalman Filter Design -- 3.3.1 Discrete-Time Kalman Filter -- 3.3.2 Continuous-Time Kalman Filter -- 3.3.3 Extended Kalman Filter -- 3.3.4 Corrector-Predictor Representation for Nonlinear Observers -- 3.3.5 Case Study: Kalman Filter for Heading Autopilots Using Only Compass Measurements -- 3.3.5.1 Heading Sensors Overview -- 3.3.5.2 System Model for Heading Autopilot Observer Design.
3.3.6 Case Study: Kalman Filter for Dynamic Positioning Systems Using GNSS and Compass Measurements -- 3.4 Nonlinear Passive Observer Designs -- 3.4.1 Case Study: Passive Observer for Dynamic Positioning Using GNSS and Compass Measurements -- 3.4.2 Case Study: Passive Observer for Heading Autopilots Using only Compass Measurements -- 3.4.3 Case Study: Passive Observer for Heading Autopilots Using Both Compass and Rate Measurements -- 3.5 Integration Filters for IMU and Global Navigation Satellite Systems -- 3.5.1 Integration Filter for Position and Linear Velocity -- 3.5.2 Accelerometer and Compass Aided Attitude Observer -- 3.5.3 Attitude Observer Using Gravitational and Magnetic Field Directions -- References -- Chapter 4 Model Predictive Control for Autonomous Marine Vehicles: A Review -- 4.1 Introduction -- 4.1.1 Object Introduction -- 4.1.2 Previous Reviews -- 4.2 Fundamental Models and a General Picture -- 4.2.1 Model of AMVs -- 4.2.1.1 6-DOF Model -- 4.2.1.2 3-DOF Model -- 4.2.2 Model Predictive Control -- 4.2.3 Literature Search -- 4.3 Methodology -- 4.3.1 MPC Applications of AMVs -- 4.3.1.1 Real-Coded Chromosome -- 4.3.1.2 Path Following -- 4.3.1.3 Trajectory Tracking -- 4.3.1.4 Cooperative Control/Formation Control -- 4.3.1.5 Collision Avoidance -- 4.3.1.6 Energy Management -- 4.3.1.7 Other Topics -- 4.4 Discussion -- 4.4.1 Limitations of Existing Techniques and Challenges in Developing MPC -- 4.4.1.1 Uncertainties of AMV Motion Models -- 4.4.1.2 Stability and Security of the New MPC Method -- 4.4.1.3 The Balance Between Effectiveness and Efficiency of the Methods -- 4.4.1.4 The Practical Application Scenario of the MPC and the Discussion of the Working Conditions -- 4.4.1.5 Challenges Posed by the Marine Environment Affect MPC Development for AMVs -- 4.4.2 Trends in the Technology Development for MPC in AMV. 4.4.2.1 More Cooperative Control with MPC -- 4.4.2.2 Rigorous Theoretical Derivation and Experimental Verification -- 4.4.2.3 Real-Time MPC for AMVs Applications -- 4.4.2.4 The Combination of Machine Learning/Neural Networks and MPC for AMVs Applications -- 4.4.2.5 Address the Challenges Posed by the Marine Environment -- 4.4.2.6 Potential Interdisciplinary Approaches that Combine MPC with Other Innovative Fields -- 4.5 Conclusion -- Acknowledgement -- References -- Chapter 5 Controller-Consistent Path Planning for Unmanned Surface Vehicles -- 5.1 Introduction -- 5.2 Problem Formulation -- 5.3 Methodology -- 5.3.1 Improved Artificial Fish Swarm Algorithm -- 5.3.1.1 Prey Behavior -- 5.3.1.2 Follow Behavior -- 5.3.1.3 Swarm Behavior -- 5.3.1.4 Random Behavior -- 5.3.1.5 Adaptive Visual and Step -- 5.3.2 Expanding Technique -- 5.3.3 Node Cutting and Path Smoother -- 5.3.4 Establishment of USV Model -- 5.4 Simulation -- 5.4.1 Monte Carlo Simulation -- 5.4.2 Path Quality Test -- 5.4.3 Simulation Using USV Control Model in Practical Environment -- 5.5 Conclusion -- References -- Chapter 6 Nonlinear Model Predictive Control and Routing for USV-Assisted Water Monitoring -- 6.1 Introduction -- 6.2 Problem Formulation -- 6.2.1 Heterogeneous Global Path Planning Problem -- 6.2.1.1 USV Model -- 6.2.1.2 Task Model -- 6.2.1.3 Problem Statement -- 6.2.2 Problem Analysis -- 6.2.3 Path Following Problem -- 6.2.3.1 Basic Assumptions -- 6.2.3.2 Vessel Model -- 6.2.3.3 Problem Description -- 6.3 Methodology -- 6.3.1 Greedy Partheno Genetic Algorithm -- 6.3.1.1 Dual-Coded Chromosome -- 6.3.1.2 Fitness Function -- 6.3.1.3 Greedy Randomized Initialization -- 6.3.1.4 Local Exploration -- 6.3.1.5 Mutation Operators -- 6.3.1.6 Algorithm Flow -- 6.3.2 Nonlinear Model Predictive Control -- 6.3.2.1 State Space Model -- 6.3.2.2 NMPC Design -- 6.3.2.3 Solver -- 6.3.2.4 Stability. 6.4 Results and Discussion -- 6.4.1 Simulation: Global Task Planning -- 6.4.1.1 Convergence Test -- 6.4.1.2 Heterogeneous Task Planning -- 6.4.2 Simulation: NMPC Control Performance -- 6.4.2.1 Test 1: Simulation Under Different Model Uncertainties -- 6.4.2.2 Test 2: Comparative Study with Other Methods -- 6.4.3 Simulation Verification of the Framework -- 6.5 Conclusion -- References -- Chapter 7 Global-Local Hierarchical Framework for USV Trajectory Planning -- 7.1 Introduction -- 7.2 Problem Formulation -- 7.2.1 Marine Environment -- 7.2.2 Dynamic Obstacles -- 7.2.3 Effects of Currents -- 7.2.4 USV Model and Constraints -- 7.2.5 Protocol Constraints -- 7.2.6 Objective Functions -- 7.2.6.1 The Minimum Cruising Time -- 7.2.6.2 The Minimum Variation of Heading Angle -- 7.2.6.3 The Safest Path -- 7.2.7 Problem Statement -- 7.3 Methodology -- 7.3.1 Adaptive-Elite GA with Fuzzy Inference (AEGAfi) -- 7.3.1.1 Real-Coded Chromosome -- 7.3.1.2 Initialization Based on Adaptive Random Testing (ART) -- 7.3.1.3 Adaptive Elite Selection -- 7.3.1.4 Double-Functioned Crossover -- 7.3.1.5 Mutation Operators -- 7.3.1.6 Fuzzy-Based Probability Choice -- 7.3.1.7 Fitness Function Design -- 7.3.2 Replanning Strategy Based on Sensory Vector -- 7.3.2.1 Sensory Vector Structure -- 7.3.2.2 Formulation of Vs -- 7.3.2.3 Formulation of Gap Vector Vg Based on COLREGs -- 7.3.2.4 Formulation of Transition Path -- 7.4 Simulation Study -- 7.4.1 Convergence Benchmark Analysis -- 7.4.2 Simulation Under Static Environment -- 7.4.3 Simulation Under Time-Varying Environment -- 7.4.4 Simulation on Real-World Geography -- 7.5 Conclusion -- Appendix -- List of Abbreviations -- Acknowledgements -- References -- Chapter 8 Reinforcement Learning for USV-Assisted Wireless Data Harvesting -- 8.1 Introduction -- 8.2 Fundamental Models -- 8.2.1 Environment Model. 8.2.2 Sensor Node and Communication Model -- 8.2.3 USV Model -- 8.2.3.1 Kinematic Model -- 8.2.3.2 Sensing Module -- 8.3 Methodology -- 8.3.1 Brief States on Q-Learning -- 8.3.2 Interactive Learning -- 8.3.2.1 Heuristic Reward Design -- 8.3.2.2 Design of Value-Iterated Global Cost Matrix -- 8.3.2.3 Local Cost Matrix and Path Generation -- 8.3.2.4 USV Actions with Discrete Precise Clothoid Path -- 8.3.3 Summary of the Path Planning Algorithm -- 8.3.4 Time Complexity -- 8.4 Results and Discussion -- 8.4.1 Performance Indicators -- 8.4.2 Hyper-Parameter Analysis -- 8.4.3 Comparative Study with State of the Art -- 8.5 Conclusion -- Appendix -- References -- Chapter 9 Achieving Optimal Dynamic Path Planning for Unmanned Surface Vehicles: A Rational Multi-Objective Approach and a Sensory-Vector Re-Planner -- 9.1 Introduction -- 9.2 Problem Formulation -- 9.2.1 Environment Modeling -- 9.2.1.1 Motion Area -- 9.2.1.2 Effects of Currents -- 9.2.2 Dynamic Obstacles -- 9.2.3 Motion Constraints -- 9.2.4 Objective Functions -- 9.2.4.1 Path Length -- 9.2.4.2 Path Smoothness -- 9.2.4.3 Energy Consumption -- 9.2.4.4 The Safest Path -- 9.2.5 Optimization Problem Statement -- 9.3 Methodology -- 9.3.1 Framework of NSGA-II -- 9.3.2 AENSGA-II -- 9.3.2.1 Real-Coded Representation -- 9.3.2.2 Initialization Using Candidate Set Adaptive Random Testing (CSART) -- 9.3.2.3 Adaptive Crowding Distance (ACD) Strategy -- 9.3.2.4 Improved Binary Tournament Selection -- 9.3.3 Fuzzy Satisfactory Degree -- 9.3.4 Replanning Strategy Based on Sensory Vector -- 9.3.4.1 Sensory Vector Structure -- 9.3.4.2 Formulation of Gap Vector Vg Based on COLREGs -- 9.3.4.3 Formulation of Transition Path -- 9.4 Results and Discussion -- 9.4.1 Convergence and Diversity Analysis -- 9.4.2 Implementation in Static Environment -- 9.4.2.1 Fixed Currents -- 9.4.2.2 Time-Varying Currents. 9.4.3 Simulation Under Dynamic Environment. |
| Record Nr. | UNINA-9911034469103321 |
Bai Yong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Deepwater flexible risers and pipelines / / Yong Bai
| Deepwater flexible risers and pipelines / / Yong Bai |
| Autore | Bai Yong |
| Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021] |
| Descrizione fisica | 1 online resource (624 pages) |
| Disciplina | 621.867209162 |
| Collana | Advances in pipes and pipelines |
| Soggetto topico | Underwater pipelines |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-5231-4330-4
1-119-32273-1 1-119-32274-X 1-119-32275-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910554817503321 |
Bai Yong
|
||
| Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Deepwater flexible risers and pipelines / / Yong Bai
| Deepwater flexible risers and pipelines / / Yong Bai |
| Autore | Bai Yong |
| Pubbl/distr/stampa | Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021] |
| Descrizione fisica | 1 online resource (624 pages) |
| Disciplina | 621.867209162 |
| Collana | Advances in pipes and pipelines |
| Soggetto topico | Underwater pipelines |
| ISBN |
1-5231-4330-4
1-119-32273-1 1-119-32274-X 1-119-32275-8 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910830254403321 |
Bai Yong
|
||
| Hoboken, New Jersey ; ; Beverly, Massachusetts : , : Scrivener Publishing : , : Wiley, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Flexible Pipelines and Power Cables
| Flexible Pipelines and Power Cables |
| Autore | Bai Yong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2024 |
| Descrizione fisica | 1 online resource (783 pages) |
| Altri autori (Persone) |
YuanShuai
JiangKaien |
| Collana | Advances in Pipes and Pipelines Series |
| Soggetto topico |
Pipelines
Cables, Submarine |
| ISBN |
9781394287536
1394287534 9781394287529 1394287526 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Acknowledgements -- Part I: Design and Application -- Chapter 1 Introduction -- 1.1 General -- 1.1.1 Flexible Pipelines -- 1.1.2 Subsea Power Cables -- 1.2 Design Issues -- 1.2.1 Design of Flexible Pipelines -- 1.2.2 Design of Subsea Power Cables -- 1.3 Applications -- 1.3.1 Flexible Pipelines -- 1.3.2 Subsea Power Cables -- 1.3.2.1 Offshore Wind Farms -- 1.3.2.2 Supply of Offshore Platforms -- 1.3.2.3 Islands Power Supply -- References -- Chapter 2 Cross-Sectional Design of Unbonded Flexible Pipeline -- 2.1 Introduction -- 2.2 Cross-Sectional Design -- 2.2.1 General Design Requirements -- 2.2.2 Manufacturing Configuration and Material Qualification -- 2.3 Case Study -- 2.3.1 Design Procedure -- 2.3.2 Design Requirement -- 2.3.3 Design Method -- 2.3.4 Design Results -- 2.3.5 Load Analysis -- 2.3.6 FE Analysis -- 2.4 Conclusions -- References -- Chapter 3 General Design of Subsea Power Cables -- 3.1 Introduction -- 3.2 Design Procedure of Subsea Power Cables -- 3.3 Design Component of Subsea Power Cables -- 3.3.1 Conductor -- 3.3.1.1 Solid Conductor -- 3.3.1.2 Conductors Stranded from Round Wires -- 3.3.1.3 Profiled Wire Conductors -- 3.3.2 Dielectric System -- 3.3.2.1 Polyethylene -- 3.3.3 Swelling Tape -- 3.3.4 Water-Blocking Sheath -- 3.3.5 Copper Sheath -- 3.3.5.1 Metallic Sheath -- 3.3.6 Aluminium Sheath -- 3.3.6.1 Stainless Steel Sheath -- 3.3.6.2 Polymeric Sheath -- 3.3.7 Armoring -- 3.3.8 Outer Serving -- References -- Chapter 4 Mechanical and Electrical Design of Subsea Power Cables -- 4.1 Mechanical Design -- 4.1.1 Tension During Cable Laying -- 4.1.2 Stress Between Conductor and Armoring -- 4.1.3 Other Loads and Impacts -- 4.1.4 Vortex Induced Vibrations -- 4.2 Electric Design -- 4.2.1 Concept of Electric Strength -- 4.2.2 Dielectric Design of AC Cables.
4.2.2.1 Overvoltage -- 4.2.2.2 Design Specification -- 4.2.3 Dielectric Design of DC Cables -- 4.2.4 Impulse Stress -- 4.2.5 Availability and Reliability -- 4.2.6 Calculation of Cable Ampacity -- 4.2.6.1 The Procedure for Calculating the Cable Ampacity h -- 4.2.6.2 Calculation Method -- 4.2.7 Allowable Short-Circuit Current -- 4.3 Cable Insulation Design -- 4.3.1 Design Principles for Insulation Thickness -- 4.3.2 Cable Insulation Design -- 4.3.2.1 Design with Average Electric Field Intensity Formula -- 4.3.3 Aging of Cable Insulation -- 4.3.4 Case Study of Insulation Thickness -- 4.3.4.1 YJV-21/35 1~200 XLPE Single Core Cable -- 4.3.4.2 66KV XLPE Single Core Cable -- References -- Chapter 5 Joints and Termination of Subsea Power Cables -- 5.1 Introduction -- 5.2 Subsea Power Cable Joints -- 5.2.1 Factory Joints -- 5.2.2 Offshore Installation Joints -- 5.2.2.1 Flexible Installation Joint -- 5.2.2.2 Rigid Installation Joint -- 5.2.2.3 Subsea Electric Cable Joint Box -- 5.2.2.4 Subsea Optical Cable Joint Box -- 5.2.3 Repair Joint -- 5.2.4 Defect Detection for XLPE Power Cable Joints -- 5.3 Subsea Power Cable Terminations -- 5.3.1 Onshore Cable Termination -- 5.3.2 Offshore Cable Terminations -- 5.4 Case Study -- References -- Chapter 6 Multi-Physics Analysis of Cable -- 6.1 Introduction -- 6.2 Multi-Physical Analysis -- 6.2.1 Theoretical Basis -- 6.2.2 Finite Element Analysis of Electromagnetic Characteristics -- 6.3 Study on Loss of Cable -- 6.4 Conclusions -- References -- Chapter 7 Design of Subsea Fiber Optic Cables -- 7.1 Plastic Optical Fiber (POF) -- 7.2 Glass Optical Fiber (GOF) -- 7.3 Fiber Bragg Grating (FBG) -- 7.3.1 Principles of FBG -- 7.3.2 FBG Applications on the Pipeline -- 7.4 Auxiliary Components for Optical Fibers -- 7.4.1 Interrogator -- 7.4.2 Optical Time Domain Reflectometer (OTDR). 7.5 Design and Manufacturing Procedures of Fiber Optic -- 7.6 Communication Cables -- 7.6.1 Static Analysis -- 7.6.2 Modal Analysis -- 7.6.3 Dynamic Analysis -- 7.6.4 Fatigue Analysis -- 7.7 Conclusions -- References -- Chapter 8 Manufacturing and Testing of Subsea Power Cables -- 8.1 Manufacturing -- 8.1.1 Conductor -- 8.1.2 XLPE Insulation -- 8.1.3 Sheathing -- 8.1.4 Lay-Up -- 8.1.5 Armoring -- 8.2 Testing -- 8.2.1 Development Tests -- 8.2.2 Type Tests -- 8.2.3 Mechanical Tests -- 8.2.4 Non-Electrical Tests -- References -- Chapter 9 Hydrodynamics -- 9.1 Introduction -- 9.2 Wave Theory -- 9.2.1 Linear Wave Theory -- 9.2.1.1 Regular Long-Crested Waves -- 9.2.1.2 Irregular Long-Crested Waves -- 9.2.2 Nonlinear Wave Theory -- 9.3 Steady Currents -- 9.4 Hydrodynamic Forces -- 9.4.1 Hydrodynamic Drag and Inertia Forces -- 9.4.1.1 Pipeline Exposed to Steady Fluid Flow -- 9.4.1.2 Pipeline Exposed to Accelerated Fluid Flow -- 9.4.1.3 The Complete Morisonfs Equation -- 9.4.1.4 Drag and Inertia Coefficient Parameter Dependency -- 9.4.2 Hydrodynamic Lift Forces -- 9.4.2.1 Lift Force Using Constant Lift Coefficients -- 9.4.2.2 Lift Force Using Variable Lift Coefficients -- References -- Part II: Global Analysis -- Chapter 10 Soil-Pipe Interaction -- 10.1 Introduction -- 10.1.1 Soil Types and Classification -- 10.1.2 Coefficients of Friction -- 10.1.3 Pipe-Soil Models -- 10.2 Pipe Penetration in Cohesive Soil -- 10.2.1 Introduction -- 10.2.2 Initial Penetration -- 10.2.2.1 Classical Bearing Capacity Method -- 10.2.2.2 Verley and Lund Method -- 10.2.2.3 Buoyancy Method -- 10.2.2.4 Murff et al. Method (1989) -- 10.2.2.5 Bruton et al. (2006) -- 10.2.3 Lay Effects -- 10.3 Pipe Penetration in Non-Cohesive Soils -- 10.3.1 Initial Penetration -- 10.3.1.1 Verley Method -- 10.3.1.2 Classical Bearing Capacity Method -- 10.3.2 Vertical Stability in Liquefied Soil. 10.4 Axial Load-Displacement Response of Pipelines -- 10.4.1 Cohesive Soil -- 10.4.2 Non-Cohesive Soil -- 10.5 Lateral Load-Displacement Response of Pipelines -- 10.5.1 Cohesive Soil -- 10.5.1.1 Classic Geotechnical Theories -- 10.5.1.2 Verley and Lund Method -- 10.5.1.3 Time-Dependent Resistance Method -- 10.5.1.4 Bruton et al. Method -- 10.5.2 Non-Cohesive Soil -- 10.5.3 eLightf and eHeavyf Pipes of Lateral Buckles -- 10.5.4 Soil Berms of Lateral Buckles -- References -- Chapter 11 On-Bottom Stability Analysis -- 11.1 Introduction -- 11.2 General Lateral Stability Method -- 11.3 Experimental Investigation -- 11.3.1 Experimental Arrangement -- 11.3.2 Test Sequence -- 11.3.3 Experiment Results -- 11.4 Numerical Analyses of Pipeline Stability with Abaqus -- 11.4.1 Pipeline Section Geometry -- 11.4.2 Modified Lateral Soil Resistance Model -- 11.4.3 Horizontal Force Due to Wave and Current -- 11.5 Case Study - Using Modified Resistance Model -- 11.5.1 Finite Element Model -- 11.5.2 Results and Comparison -- 11.6 Conclusions -- References -- Chapter 12 Pipelay Analysis -- 12.1 Introduction -- 12.2 Reel-Lay Method -- 12.3 Mathematical Model -- 12.4 Platform Motion and Raw Ocean Environmental Data -- 12.5 Mechanics Performance Test of Flexible Pipe -- 12.5.1 Tensile Test for Flexible Pipe -- 12.5.2 Bending Test for Flexible Pipe -- 12.6 Safety Assessment Procedure -- 12.6.1 Flexible Pipe Offshore Laying Scheme Design -- 12.6.2 Mechanics, Deformation, and Buckling Results -- 12.7 Conclusions -- References -- Part III: Mechanical Analysis -- Chapter 13 Reeling Operation of Flexible Pipelines -- 13.1 Introduction -- 13.2 Local Analysis -- 13.2.1 Geometrical and Material Characteristics -- 13.2.2 Tension Test -- 13.2.3 Bending Test -- 13.2.4 Summary -- 13.3 Global Analysis -- 13.3.1 Modeling -- 13.3.2 Interaction and Mesh. 13.3.3 Load and Boundary Conditions -- 13.3.4 Results and Discussions -- 13.4 Parametric Study -- 13.4.1 Diameter of the Coiling Drum -- 13.4.2 Sinking Distance of Coiling Drum -- 13.4.3 Reeling Length -- 13.4.4 Location of Bearing Plate -- 13.5 Conclusions -- References -- Chapter 14 Flexible Pipelines Subjected to Asymmetric Loads -- 14.1 Introduction -- 14.2 Cross-Section Design -- 14.2.1 General Design Requirements -- 14.2.2 Manufacturing Configuration and Material Qualification -- 14.2.3 Design Procedure -- 14.3 Case Study for a 6-Inch SSRTP -- 14.3.1 Internal Pressure -- 14.3.1.1 Theoretical Solution -- 14.3.1.2 FEM Verification -- 14.3.1.3 Summary -- 14.3.2 External Pressure -- 14.3.2.1 Theoretical Solution -- 14.3.2.2 FEM Verification -- 14.3.2.3 Summary -- 14.3.3 Axial Tension -- 14.3.3.1 Theoretical Solution -- 14.3.3.2 FEM Verification -- 14.3.3.3 Summary -- 14.4 SSRTP with Additional Tensile Amours -- 14.5 Conclusions -- References -- Chapter 15 Stress Concentration Effect on the Anti-Burst Capacity -- 15.1 Introduction -- 15.2 Theoretical Model -- 15.2.1 Material Properties Analysis -- 15.2.2 Strain-Stress Relations -- 15.3 Theoretical Model for Squeeze Pressure -- 15.4 Theoretical Model of Pipe Wall with Swaging End Fitting -- 15.5 Results and Discussion -- 15.6 Conclusions -- References -- Chapter 16 Compressive Buckling of Tensile Armours -- 16.1 Introduction -- 16.2 Equilibrium Differential Equations and Lateral Buckling Force -- 16.3 Results of Bflex -- 16.3.1 Bflex Model -- 16.3.2 Boundary Conditions -- 16.3.3 Load Conditions -- 16.3.4 Comparison with Theoretical Results -- 16.3.5 Buckling Force Selected from Blex Results -- 16.4 Parameters Analysis -- 16.4.1 Influence of Initial Imperfections -- 16.4.2 Influence of Effective Buckling Length of Tendon -- 16.4.3 Influence of Winding Radius of Tendon. 16.4.4 Influence of Layangle of Tendon. |
| Record Nr. | UNINA-9911019636003321 |
Bai Yong
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Marine structural design / / Yong Bai, Wei-Liang Jin ; acquisition editor Carrie Bolger ; designer Matthew Limbert
| Marine structural design / / Yong Bai, Wei-Liang Jin ; acquisition editor Carrie Bolger ; designer Matthew Limbert |
| Autore | Bai Yong |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Butterworth-Heinemann, , 2016 |
| Descrizione fisica | 1 online resource (0 p.) |
| Disciplina | 627/.98 |
| Soggetto topico |
Offshore structures - Design and construction
Naval architecture |
| ISBN | 0-08-100007-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910797527903321 |
Bai Yong
|
||
| Amsterdam, [Netherlands] : , : Butterworth-Heinemann, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Marine structural design / / Yong Bai, Wei-Liang Jin ; acquisition editor Carrie Bolger ; designer Matthew Limbert
| Marine structural design / / Yong Bai, Wei-Liang Jin ; acquisition editor Carrie Bolger ; designer Matthew Limbert |
| Autore | Bai Yong |
| Edizione | [Second edition.] |
| Pubbl/distr/stampa | Amsterdam, [Netherlands] : , : Butterworth-Heinemann, , 2016 |
| Descrizione fisica | 1 online resource (0 p.) |
| Disciplina | 627/.98 |
| Soggetto topico |
Offshore structures - Design and construction
Naval architecture |
| ISBN | 0-08-100007-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910821683803321 |
Bai Yong
|
||
| Amsterdam, [Netherlands] : , : Butterworth-Heinemann, , 2016 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Marine structural design [[electronic resource] /] / Yong Bai
| Marine structural design [[electronic resource] /] / Yong Bai |
| Autore | Bai Yong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Amsterdam ; ; Boston, : Elsevier, 2003 |
| Descrizione fisica | 1 online resource (627 p.) |
| Disciplina | 627/.98 |
| Soggetto topico |
Offshore structures - Design and construction
Naval architecture |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-07043-2
9786611070434 0-08-053583-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Marine Structural Design; Copyright Page; Preface; Table of Contents; Part I: Structural Design Principles; Chapter 1. Introduction; 1.1 Structural Design Principles; 1.2 Strength and Fatigue Analysis; 1.3 Structural Reliability Applications; 1.4 Risk Assessment; 1.5 Layout of This Book; 1.6 How to Use This Book; 1.7 References; Chapter 2. Wave Loads for Ship Design and Classification; 2.1 Introduction; 2.2 Ocean Waves and Wave Statistics; 2.3 Ship Response to a Random Sea; 2.4 Ship Design for Classification; 2.5 References
Chapter 3. Loads and Dynamic Response for Offshore Structures3.1 General; 3.2 Environmental Conditions; 3.3 Environmental Loads and Floating Structure Dynamics; 3.4 Structural Response Analysis; 3.5 Extreme Values; 3.6 Concluding Remarks; 3.7 References; 3.8 Appendix A: Elastic Vibrations of Beams; Chapter 4. Scantling of Ship's Hulls by Rules; 4.1 General; 4.2 Basic Concepts of Stability and Strength of Ships; 4.3 Initial Scantling Criteria for Longitudinal Strength; 4.4 Initial Scantling Criteria for Transverse Strength; 4.5 Initial Scantling Criteria for Local Strength; 4.6 References Chapter 5. Ship Hull Scantling Design by Analysis5.1 General; 5.2 Design Loads; 5.3 Strength Analysis using Finite Element Methods; 5.4 Fatigue Damage Evaluation; 5.5 References; Chapter 6. Offshore Structural Analysis; 6.1 Introduction; 6.2 Project Planning; 6.3 Use of Finite Element Analysis; 6.4 Design Loads and Load Application; 6.5 Structural Modeling; 6.6 References; Chapter 7. Limit-State Design of Offshore Structures; 7.1 Limit State Design; 7.2 Ultimate Limit State Design; 7.3 Fatigue Limit State Design; 7.4 References; Part II: Ultimate Strength Chapter 8. Buckling/Collapse of Columns and Beam-Columns8.1 Buckling Behavior and Ultimate Strength of Columns; 8.2 Buckling Behavior and Ultimate Strength of Beam-Columns; 8.3 Plastic Design of Beam-Columns; 8.4 Examples; 8.5 References; Chapter 9. Buckling and Local Buckling of Tubular Members; 9.1 Introduction; 9.2 Experiments; 9.3 Theory of Analysis; 9.4 Calculation Results; 9.5 Conclusions; 9.6 Example; 9.7 References; Chapter 10. Ultimate Strength of Plates and Stiffened Plates; 10.1 Introduction; 10.2 Combined Loads; 10.3 Buckling Strength of Plates 10.4 Ultimate Strength of Un-Stiffened Plates10.5 Ultimate Strength of Stiffened Panels; 10.6 Gross Buckling of Stiffened Panels (Overall Grillage Buckling); 10.7 References; Chapter 11. Ultimate Strength of Cylindrical Shells; 11.1 Introduction; 11.2 Elastic Buckling of Unstiffened Cylindrical Shells; 11.3 Buckling of Ring Stiffened Shells; 11.4 Buckling of Stringer and Ring Stiffened Shells; 11.5 References; Chapter 12. A Theory of Nonlinear Finite Element Analysis; 12.1 General; 12.2 Elastic Beam-Column With Large Displacements; 12.3 The Plastic Node Method; 12.4 Transformation Matrix 12.5 Appendix A: Stress-Based Plasticity Constitutive Equations |
| Record Nr. | UNINA-9910457995003321 |
Bai Yong
|
||
| Amsterdam ; ; Boston, : Elsevier, 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Marine structural design / / Yong Bai
| Marine structural design / / Yong Bai |
| Autore | Bai Yong |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Amsterdam ; ; Boston : , : Elsevier, , 2003 |
| Descrizione fisica | 1 online resource (627 pages) : illustrations |
| Disciplina | 627/.98 |
| Soggetto topico |
Offshore structures - Design and construction
Naval architecture |
| ISBN |
1-281-07043-2
9786611070434 0-08-053583-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Marine Structural Design; Copyright Page; Preface; Table of Contents; Part I: Structural Design Principles; Chapter 1. Introduction; 1.1 Structural Design Principles; 1.2 Strength and Fatigue Analysis; 1.3 Structural Reliability Applications; 1.4 Risk Assessment; 1.5 Layout of This Book; 1.6 How to Use This Book; 1.7 References; Chapter 2. Wave Loads for Ship Design and Classification; 2.1 Introduction; 2.2 Ocean Waves and Wave Statistics; 2.3 Ship Response to a Random Sea; 2.4 Ship Design for Classification; 2.5 References
Chapter 3. Loads and Dynamic Response for Offshore Structures; 3.1 General; 3.2 Environmental Conditions; 3.3 Environmental Loads and Floating Structure Dynamics; 3.4 Structural Response Analysis; 3.5 Extreme Values; 3.6 Concluding Remarks; 3.7 References; 3.8 Appendix A: Elastic Vibrations of Beams; Chapter 4. Scantling of Ship's Hulls by Rules; 4.1 General; 4.2 Basic Concepts of Stability and Strength of Ships; 4.3 Initial Scantling Criteria for Longitudinal Strength; 4.4 Initial Scantling Criteria for Transverse Strength; 4.5 Initial Scantling Criteria for Local Strength; 4.6 References Chapter 5. Ship Hull Scantling Design by Analysis; 5.1 General; 5.2 Design Loads; 5.3 Strength Analysis using Finite Element Methods; 5.4 Fatigue Damage Evaluation; 5.5 References; Chapter 6. Offshore Structural Analysis; 6.1 Introduction; 6.2 Project Planning; 6.3 Use of Finite Element Analysis; 6.4 Design Loads and Load Application; 6.5 Structural Modeling; 6.6 References; Chapter 7. Limit-State Design of Offshore Structures; 7.1 Limit State Design; 7.2 Ultimate Limit State Design; 7.3 Fatigue Limit State Design; 7.4 References; Part II: Ultimate Strength Chapter 8. Buckling/Collapse of Columns and Beam-Columns; 8.1 Buckling Behavior and Ultimate Strength of Columns; 8.2 Buckling Behavior and Ultimate Strength of Beam-Columns; 8.3 Plastic Design of Beam-Columns; 8.4 Examples; 8.5 References; Chapter 9. Buckling and Local Buckling of Tubular Members; 9.1 Introduction; 9.2 Experiments; 9.3 Theory of Analysis; 9.4 Calculation Results; 9.5 Conclusions; 9.6 Example; 9.7 References; Chapter 10. Ultimate Strength of Plates and Stiffened Plates; 10.1 Introduction; 10.2 Combined Loads; 10.3 Buckling Strength of Plates 10.4 Ultimate Strength of Un-Stiffened Plates; 10.5 Ultimate Strength of Stiffened Panels; 10.6 Gross Buckling of Stiffened Panels (Overall Grillage Buckling); 10.7 References; Chapter 11. Ultimate Strength of Cylindrical Shells; 11.1 Introduction; 11.2 Elastic Buckling of Unstiffened Cylindrical Shells; 11.3 Buckling of Ring Stiffened Shells; 11.4 Buckling of Stringer and Ring Stiffened Shells; 11.5 References; Chapter 12. A Theory of Nonlinear Finite Element Analysis; 12.1 General; 12.2 Elastic Beam-Column With Large Displacements; 12.3 The Plastic Node Method; 12.4 Transformation Matrix; 12.5 Appendix A: Stress-Based Plasticity Constitutive Equations |
| Record Nr. | UNINA-9910784636703321 |
Bai Yong
|
||
| Amsterdam ; ; Boston : , : Elsevier, , 2003 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Pipelines and risers [[electronic resource] /] / Yong Bai
| Pipelines and risers [[electronic resource] /] / Yong Bai |
| Autore | Bai Yong |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Amsterdam ; ; New York, : Elsevier, 2001 |
| Descrizione fisica | 1 online resource (521 p.) |
| Disciplina | 665.5/44 |
| Collana | Elsevier ocean engineering book series |
| Soggetto topico |
Offshore structures - Design and construction
Underwater pipelines - Design and construction |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-281-05658-8
9786611056582 0-08-053901-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Pipelines and Risers; Copyright Page; Series Preface; Foreword; Preface; Table of Contents; Chapter 1. Introduction; 1.1 Introduction; 1.2 Design Stages and Process; 1.3 Design Through Analysis (DTA); 1.4 Pipeline Design Analysis; 1.5 Pipeline Simulator; 1.6 References; Chapter 2. Wall-thickness and Material Grade Selection; 2.1 General; 2.2 Material Grade Selection; 2.3 Pressure Containment (hoop stress) Design; 2.4 Equivalent Stress Criterion; 2.5 Hydrostatic Collapse; 2.6 Wall Thickness and Length Design for Buckle Arrestors; 2.7 Buckle Arrestor Spacing Design; 2.8 References
Chapter 3. Buckling/Collapse of Deepwater Metallic Pipes3.1 General; 3.2 Pipe Capacity under Single Load; 3.3 Pipe Capacity under Couple Load; 3.4 Pipes under Pressure Axial Force and Bending; 3.5 Finite Element Model; 3.6 References; Chapter 4. Limit-state based Strength Design; 4.1 Introduction; 4.2 Out of Roundness Serviceability Limit; 4.3 Bursting; 4.4 Local Buckling/Collapse; 4.5 Fracture; 4.6 Fatigue; 4.7 Ratcheting; 4.8 Dynamic Strength Criteria; 4.9 Accumulated Plastic Strain; 4.10 Strain Concentration at Field Joints Due to Coatings; 4.11 References Chapter 5. Soil and Pipe Interaction 5.1 General; 5.2 Pipe Penetration in Soil; 5.3 Modeling Friction and Breakout Forces; 5.4 References; Chapter 6. Hydrodynamics around Pipes; 6.1 Wave Simulators; 6.2 Choice of Wave Theory; 6.3 Mathematical Formulations used in the Wave Simulators; 6.4 Steady Currents; 6.5 Hydrodynamic Forces; 6.6 References; Chapter 7. Finite Element Analysis of In-situ Behavior; 7.1 Introduction; 7.2 Description of the Finite Element Model; 7.3 Steps in an Analysis and Choice of Analysis Procedure; 7.4 Element Types used in the Model; 7.5 Non-linearity and Seabed Model 7.6 Validation of the Finite-Element Model 7.7 References; Chapter 8. On-bottom Stability; 8.1 General; 8.2 Force Balance: The Simplified Method; 8.3 Acceptance Criteria; 8.4 Special Purpose Program for Stability Analysis; 8.5 Use of FE Analysis for Intervention Design; 8.6 References; Chapter 9. Vortex-induced Vibrations (VIV) and Fatigue; 9.1 General; 9.2 Free-span VIV Analysis Procedure; 9.3 Fatigue Design Criteria; 9.4 Response Amplitude; 9.5 Modal Analysis; 9.6 Example Cases; 9.7 References; Chapter 10. Force Model and Wave Fatigue; 10.1 Introduction; 10.2 Fatigue Analysis 10.3 Force Model 10.4 Comparisons of Frequency Domain and Time Domain Approaches; 10.5 Conclusions and Recommendations; 10.6 References; Chapter 11. Trawl Impact, Pullover and Hooking Loads; 11.1 Introduction; 11.2 Trawl Gears; 11.3 Acceptance Criteria; 11.4 Impact Response Analysis; 11.5 Pullover Loads; 11.6 Finite Element Model for Pullover Response Analyses; 11.7 Case Study; 11.8 References; Chapter 12. Installation Design; 12.1 Introduction; 12.2 Pipeline Installation Vessels; 12.3 Software OFFPIPE and Code Requirements; 12.4 Physical Background for Installation 12.5 Finite Element Analysis Procedure for Installation of In-line Valves |
| Record Nr. | UNINA-9910450636903321 |
Bai Yong
|
||
| Amsterdam ; ; New York, : Elsevier, 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Pipelines and risers / / Yong Bai
| Pipelines and risers / / Yong Bai |
| Autore | Bai Yong |
| Edizione | [First edition.] |
| Pubbl/distr/stampa | Amsterdam ; ; New York : , : Elsevier, , 2001 |
| Descrizione fisica | 1 online resource (521 pages) : illustrations |
| Disciplina | 665.5/44 |
| Collana | Elsevier ocean engineering book series |
| Soggetto topico |
Offshore structures - Design and construction
Underwater pipelines - Design and construction |
| ISBN |
1-281-05658-8
9786611056582 0-08-053901-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Front Cover; Pipelines and Risers; Copyright Page; Series Preface; Foreword; Preface; Table of Contents; Chapter 1. Introduction; 1.1 Introduction; 1.2 Design Stages and Process; 1.3 Design Through Analysis (DTA); 1.4 Pipeline Design Analysis; 1.5 Pipeline Simulator; 1.6 References; Chapter 2. Wall-thickness and Material Grade Selection; 2.1 General; 2.2 Material Grade Selection; 2.3 Pressure Containment (hoop stress) Design; 2.4 Equivalent Stress Criterion; 2.5 Hydrostatic Collapse; 2.6 Wall Thickness and Length Design for Buckle Arrestors; 2.7 Buckle Arrestor Spacing Design; 2.8 References
Chapter 3. Buckling/Collapse of Deepwater Metallic Pipes3.1 General; 3.2 Pipe Capacity under Single Load; 3.3 Pipe Capacity under Couple Load; 3.4 Pipes under Pressure Axial Force and Bending; 3.5 Finite Element Model; 3.6 References; Chapter 4. Limit-state based Strength Design; 4.1 Introduction; 4.2 Out of Roundness Serviceability Limit; 4.3 Bursting; 4.4 Local Buckling/Collapse; 4.5 Fracture; 4.6 Fatigue; 4.7 Ratcheting; 4.8 Dynamic Strength Criteria; 4.9 Accumulated Plastic Strain; 4.10 Strain Concentration at Field Joints Due to Coatings; 4.11 References Chapter 5. Soil and Pipe Interaction 5.1 General; 5.2 Pipe Penetration in Soil; 5.3 Modeling Friction and Breakout Forces; 5.4 References; Chapter 6. Hydrodynamics around Pipes; 6.1 Wave Simulators; 6.2 Choice of Wave Theory; 6.3 Mathematical Formulations used in the Wave Simulators; 6.4 Steady Currents; 6.5 Hydrodynamic Forces; 6.6 References; Chapter 7. Finite Element Analysis of In-situ Behavior; 7.1 Introduction; 7.2 Description of the Finite Element Model; 7.3 Steps in an Analysis and Choice of Analysis Procedure; 7.4 Element Types used in the Model; 7.5 Non-linearity and Seabed Model 7.6 Validation of the Finite-Element Model 7.7 References; Chapter 8. On-bottom Stability; 8.1 General; 8.2 Force Balance: The Simplified Method; 8.3 Acceptance Criteria; 8.4 Special Purpose Program for Stability Analysis; 8.5 Use of FE Analysis for Intervention Design; 8.6 References; Chapter 9. Vortex-induced Vibrations (VIV) and Fatigue; 9.1 General; 9.2 Free-span VIV Analysis Procedure; 9.3 Fatigue Design Criteria; 9.4 Response Amplitude; 9.5 Modal Analysis; 9.6 Example Cases; 9.7 References; Chapter 10. Force Model and Wave Fatigue; 10.1 Introduction; 10.2 Fatigue Analysis 10.3 Force Model 10.4 Comparisons of Frequency Domain and Time Domain Approaches; 10.5 Conclusions and Recommendations; 10.6 References; Chapter 11. Trawl Impact, Pullover and Hooking Loads; 11.1 Introduction; 11.2 Trawl Gears; 11.3 Acceptance Criteria; 11.4 Impact Response Analysis; 11.5 Pullover Loads; 11.6 Finite Element Model for Pullover Response Analyses; 11.7 Case Study; 11.8 References; Chapter 12. Installation Design; 12.1 Introduction; 12.2 Pipeline Installation Vessels; 12.3 Software OFFPIPE and Code Requirements; 12.4 Physical Background for Installation; 12.5 Finite Element Analysis Procedure for Installation of In-line Valves |
| Record Nr. | UNINA-9910783201103321 |
Bai Yong
|
||
| Amsterdam ; ; New York : , : Elsevier, , 2001 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||