top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Translational multimodality optical imaging / / Fred S. Azar, Xavier Intes, editors
Translational multimodality optical imaging / / Fred S. Azar, Xavier Intes, editors
Pubbl/distr/stampa Boston : , : Artech House, , ©2008
Descrizione fisica xxi, 386 p., [24] p. of plates : ill. (some col.) ; ; 27 cm
Disciplina 616.07545
Altri autori (Persone) AzarFred S
IntesXavier
Collana Artech House series bioinformatics & biomedical imaging
Soggetto topico Diagnostic imaging - Digital techniques
Imaging systems in medicine
Spectroscopic imaging
Soggetto genere / forma Electronic books.
ISBN 1-5231-1767-2
1-59693-308-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910455178003321
Boston : , : Artech House, , ©2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Translational multimodality optical imaging / / Fred S. Azar, Xavier Intes, editors
Translational multimodality optical imaging / / Fred S. Azar, Xavier Intes, editors
Pubbl/distr/stampa Boston : , : Artech House, , ©2008
Descrizione fisica xxi, 386 p., [24] p. of plates : ill. (some col.) ; ; 27 cm
Disciplina 616.07545
Altri autori (Persone) AzarFred S
IntesXavier
Collana Artech House series bioinformatics & biomedical imaging
Soggetto topico Diagnostic imaging - Digital techniques
Imaging systems in medicine
Spectroscopic imaging
ISBN 1-5231-1767-2
1-59693-308-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910778002603321
Boston : , : Artech House, , ©2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Translational multimodality optical imaging / / Fred S. Azar, Xavier Intes, editors
Translational multimodality optical imaging / / Fred S. Azar, Xavier Intes, editors
Edizione [1st ed.]
Pubbl/distr/stampa Boston, : Artech House, c2008
Descrizione fisica xxi, 386 p., [24] p. of plates : ill. (some col.) ; ; 27 cm
Disciplina 616.07545
Altri autori (Persone) AzarFred S
IntesXavier
Collana Artech House series bioinformatics & biomedical imaging
Soggetto topico Diagnostic imaging - Digital techniques
Imaging systems in medicine
Spectroscopic imaging
ISBN 1-5231-1767-2
1-59693-308-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Translational Multimodality Optical Imaging -- Contents -- Foreword -- Preface -- Translational Research -- Optical Imaging -- A Case Example of Translational Optical Imaging: The Network forTranslational Research in Optical Imaging -- Aim and Scope of This Book -- Acknowledgments -- Ref erences -- Chapter 1: Introduction to Clinical Optical Imaging -- 1.1 Introduction -- 1.2 Tissue Optics -- 1.2.1 Scattering -- 1.2.2 Raman Scattering -- 1.2.3 Absorption -- 1.2.4 Fluorescence -- 1.3 Light Propagation -- 1.3.1 Fundamentals -- 1.3.2 Forward Model -- 1.4 Multimodality Imaging -- 1.4.1 A Brief History of Clinical Multimodality Imaging -- 1.4.2 Multimodality Optical Imaging -- 1.5 Conclusions -- References -- Chapter 2: In Vivo Microscopy -- 2.1 Introduction -- 2.2 Confocal Microscopy -- 2.3 Endoscope-Compatible Systems -- 2.4 MKT Cellvizio-GI -- 2.5 Dual-Axes Confocal Microscope -- 2.6 Molecular Imaging -- References -- Chapter 3: Endoscopy -- 3.1 Introduction -- 3.2 Point-Probe Spectroscopy Techniques -- 3.2.1 Scattering Spectroscopy -- 3.2.2 Fluorescence Spectroscopy -- 3.2.3 Raman Spectroscopy -- 3.2.4 Multimodality Spectroscopy -- 3.3 Wide-Field Imaging -- 3.3.1 Fluorescence Imaging -- 3.3.2 Molecular Imaging -- 3.3.3 Chromoendoscopy -- 3.3.4 Narrowband Imaging -- 3.3.5 Multimodality Wide-Field Imaging -- 3.4 Cross-Sectional Imaging -- 3.4.1 Endoscopic Optical Coherence Tomography -- 3.4.2 Ultrahigh-Resolution OCT (UHROCT) -- 3.4.3 Three-Dimensional OCT -- 3.4.4 Multimodality Imaging with OCT -- 3.5 Summary -- Acknowledgments -- References -- Chapter 4: Diffuse Optical Techniques: Instrumentation -- 4.1 Introduction: Deterministic "Diffuse" Detection of Probabilistic Photon Propagation -- 4.2 Methods of Differentiating the Origin of Diffuse Photons -- 4.2.1 The Source-Encoding Requirement in DOT.
4.2.2 Methods of Source Encoding and Detector Decoding for Diffuse Optical Tomography -- 4.3 Techniques of Decoupling the Absorption and Scattering Contributions to the Photon Remission -- 4.3.1 Time-Domain Detection -- 4.3.2 Frequency-Domain Detection -- 4.3.3 Continuous-Wave Detection -- 4.4 Principles of Determining the Heterogeneity of Optical Properties -- 4.4.1 Tomographic Image Reconstruction and Prior Utilization -- 4.4.2 Diffuse Optical Tomography Imaging in the Context of MultimodalityImaging -- 4.5 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Source Spectral Encoding -- 4.5.1 Discrete Spectral Encoding by Use of Multiple Laser Diodes -- 4.5.2 Imaging Examples of Spectral-Encoding Rapid NIR Tomography -- 4.5.3 Spread Spectral Encoding by Use of Single Wideband Light Source -- 4.5.4 Light Sources for Spread Spectral Encoding -- 4.5.5 Characteristics of Spread Spectral Encoding -- 4.5.6 Hemodynamic Imaging by Spread-Spectral-Encoding NIR Tomography -- 4.6 Novel Approaches in Instrumentation of Diffuse Optical Tomography: Transrectal Applicator -- 4.6.1 Transrectal Applicator for Transverse DOT Imaging -- 4.6.2 Transrectal Applicator for Sagittal DOT Imaging -- 4.7 Potential Directions of Instrumentation for Diffuse Optical Measurements -- 4.8 Conclusions -- Acknowledgments -- References -- Chapter 5: Multimodal Diffuse Optical Tomography:Theory -- 5.1 Introduction -- 5.2 Diffuse Optical Tomography -- 5.2.1 The Forward Problem and Linearization -- 5.2.2 Inverse Problem -- 5.3 Multimodality Reconstruction: Review of Previous Work -- 5.4 Multimodality Priors and Regularization -- 5.4.1 Structural Priors -- 5.4.2 Regularization Using Mutual Information -- 5.5 Conclusions -- Acknowledgments -- References -- Chapter 6: Diffuse Optical Spectroscopy with Magnetic Resonance Imaging -- 6.1 Introduction -- 6.2 Anatomical Imaging.
6.3 Combining Hemodynamic Measures of MRI and Optical Imaging -- 6.4 MRI-Guided Optical Imaging Reconstruction Techniques -- 6.5 Other MR-Derived Contrast and Optical Imaging -- 6.6 Hardware Challenges to Merging Optical and MRI -- 6.7 Optical/MR Contrast Agents -- 6.8 Outlook for MR-Optical Imaging -- References -- Chapter 7: Software Platforms for Integration of Diffuse Optical Imaging and OtherModalities -- 7.1 Introduction -- 7.1.1 A Platform for Diffuse Optical Tomography -- 7.1.2 A Platform for Diffuse Optical Spectroscopy -- 7.2 Imaging Platform Technologies -- 7.2.1 Multimodal Imaging Workflow for DOT Applications -- 7.2.2 3D-DOT/3D-MRI Image-Registration Algorithm -- 7.2.3 Breast MRI Image Segmentation -- 7.2.4 Image-Based Guidance Workflow and System for DOS Applications -- 7.3 Computing the Accuracy of a Guidance and Tracking System -- 7.3.1 Global Accuracy of the System -- 7.3.2 Motion Tracking -- 7.4 Application to Nonconcurrent MRI and DOT Data of Human Subjects -- 7.5 Conclusion -- Acknowledgments -- References -- Chapter 8: Diffuse Optical Spectroscopy in Breast Cancer: Coregistration with MRI and Predicting Response to Neoadjuvant Chemotherapy -- 8.1 Introduction -- 8.2 Coregistration with MRI -- 8.2.1 Materials and Methods -- 8.2.2 Results -- 8.2.3 Discussion -- 8.3 Monitoring and Predicting Response to Breast Cancer Neoadjuvant Chemotherapy -- 8.3.1 Materials and Methods -- 8.3.2 Results -- 8.3.3 Discussion -- 8.4 Summary and Conclusions -- Acknowledgments -- References -- Chapter 9: Optical Imaging and X-Ray Imaging -- 9.1 Introduction -- 9.1.1 Current Clinical Approach to Breast Cancer Screening and Diagnosis -- 9.1.2 The Importance of Fusing Function and Structural Information -- 9.1.3 Recent Advances in DOT for Imaging Breast Cancer -- 9.2 Instrumentation and Methods.
9.2.1 Tomographic Optical Breast-Imaging System and Tomosynthesis -- 9.2.2 3D Forward Modeling and Nonlinear Image Reconstruction -- 9.2.3 Simultaneous Image Reconstruction with Calibration Coefficient Estimation -- 9.2.4 Utilizing Spectral Prior and Best Linear Unbiased Estimator -- 9.2.5 Utilizing Spatial Prior from Tomosynthesis Image -- 9.3 Clinical Trial of TOBI/DBT Imaging System -- 9.3.1 Image Reconstruction of Healthy Breasts -- 9.3.2 Imaging Breasts with Tumors or Benign Lesions -- 9.3.3 Region-of-Interest Analysis -- 9.4 Dynamic Imaging of Breast Under Mechanical Compression -- 9.4.1 Experiment Setup -- 9.4.2 Tissue Dynamic from Healthy Subjects -- 9.4.3 Contact Pressure Map Under Compression -- 9.5 Conclusions -- References -- Chapter 10: Diffuse Optical Imaging and PET Imaging -- 10.1 Introduction -- 10.2 Positron Emission Tomography (PET) -- 10.2.1 PET Fundamentals -- 10.2.2 PET Image Reconstruction -- 10.2.3 PET Instrumentation -- 10.3 Diffuse Optical Imaging (DOI) -- 10.3.1 DOI Instrumentation -- 10.3.2 DOI Image Reconstruction -- 10.4 Fluorescence Diffuse Optical Imaging (FDOI) -- 10.5 Clinical Observations -- 10.5.1 Whole-Body PET and DOI -- 10.5.2 Breast-Only PET and DOI -- 10.5.3 ICG Fluorescence -- 10.6 Summary -- References -- Chapter 11: Photodynamic Therapy -- 11.1 Introduction -- 11.2 Basics of PDT -- 11.3 Superficial Applications -- 11.4 PDT in Body Cavities -- 11.5 PDT for Solid Tumors -- 11.6 Delivery and Monitoring of PDT -- 11.7 The Future of PDT and Imaging -- Acknowledgments -- References -- Chapter 12: Optical Phantoms for Multimodality Imaging -- 12.1 Introduction -- 12.2 Absorption and Scatter Phantom Composition -- 12.3 Typical Tissue Phantoms for Multimodal and Optical Imaging -- 12.3.1 Hydrogel-Based Phantoms -- 12.3.2 Polyester Resin and RTV Silicone Phantoms -- 12.3.3 Aqueous Suspension Phantoms.
12.4 Conclusions -- Acknowledgments -- References -- Chapter 13: Intraoperative Near-Infrared Fluorescent Imaging Exogenous Fluorescence Contrast Agents -- 13.1 Introduction -- 13.2 Unmet Medical Needs Addressed by Intraoperative NIR Fluorescence Imaging -- 13.2.1 Improving Long-Term Efficacy of Primary Treatment -- 13.2.2 Reducing the Rate of Complications -- 13.3 Imaging Considerations -- 13.3.1 Contrast Media -- 13.3.2 Tissue Penetration Depth -- 13.3.3 Autofluorescence -- 13.3.4 Optical Design Considerations -- 13.3.5 Excitation -- 13.3.6 Collection Optics and Emission Filtering -- 13.3.7 Detectors -- 13.4 Future Outlook -- References -- Chapter 14: Clinical Studies in Optical Imaging: An Industry Perspective -- 14.1 Introduction -- 14.2 Breast Cancer -- 14.3 Optical Breast-Imaging Technology -- 14.4 Development Process -- 14.4.1 Product Definition -- 14.4.2 Clinical Indication -- 14.4.3 Target Markets -- 14.4.4 Regulatory Risk Classification -- 14.4.5 General Device Description -- 14.4.6 Design Control -- 14.5 Clinical Trials and Results -- 14.5.1 Clinical Plan -- 14.5.2 Pilot Studies -- 14.5.3 Tissue-Characterization Trials -- 14.6 Conclusions -- Acknowledgments -- References -- Chapter 15: Regulation and Regulatory Science for Optical Imaging -- 15.1 Introduction -- 15.2 Fundamental Concepts in Medical Device Regulation -- 15.2.1 Premarket and Postmarket -- 15.2.2 Safety -- 15.2.3 Effectiveness -- 15.2.4 Risk Evaluation -- 15.2.5 Labeling -- 15.2.6 Standards -- 15.3 Medical Device Regulation Throughout the World -- 15.3.1 International Harmonization of Medical Device Regulation -- 15.4 FDA Background -- 15.4.1 FDA Mission -- 15.4.2 FDA History and Authorizing Legislation -- 15.4.3 Organizational Structure of the FDA -- 15.5 Overview of FDA Regulations -- 15.5.1 Classification -- 15.5.2 Early Premarket Interactions.
15.5.3 Premarket Submissions.
Record Nr. UNINA-9910820759203321
Boston, : Artech House, c2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui