top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors
Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (311 pages)
Disciplina 628
Soggetto topico Sustainable engineering - Data processing
Artificial intelligence
ISBN 3-030-77070-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgement -- Contents -- About the Authors -- Possibilities of Industrial Trends and Business Benefits with Industry 4.0 Technology: A Survey -- 1 Introduction -- 2 How the Concept of Supply and Demand Applies to the Overall Economy? -- 3 Technology Road Map for Industry 4.0 -- 3.1 Smart Factory -- 3.2 Cargo Loading and Unloading -- 3.2.1 Formal integration platform -- 3.2.2 Technological Challenges and Accompanying Ranging of Data -- 3.2.3 Vertical Incorporation of Intelligent Development -- 3.3 A New Wave of Corporate Supply Chains -- 3.4 All the Way Through the Supply Chain -- 4 Aspects for IT Management to Consider -- 5 Concepts of Creativity -- 6 The Effective Administration of Creativity -- 7 Encompasses Every Facet of Our Lives from Social Media to E-Commerce -- 7.1 Collecting Data -- 7.2 Looking out Opportunities -- 7.3 Consistency -- 8 Conclusion -- References -- Impact of Internet of Things on Logistics Management: A Framework for Logistics Information System -- 1 Introduction -- 2 IoT Emergence and the Internet -- 3 Interaction of IoT and Human -- 4 Information Sharing in Logistics and Supply Chain -- 5 IoT for Logistics Information System -- 6 Benefits of IoT for Logistics -- 7 Innovation of Logistics in IoT Context -- 8 IoT Framework for Logistics Information System -- 9 IoT for Logistics Information System in Future -- 10 Conclusion -- References -- Green Internet of Things (G-IoT): An Exposition for Sustainable Technological Development -- 1 Overview -- 2 Internet of Things -- 2.1 The Technology Stack of IoT -- 2.2 IoT Stack: Connectivity Options -- 2.3 Empowering Technology for IoT -- 2.4 IoT Features -- 2.5 Architecture of IoT -- 2.6 Ecosystem of IoT -- 3 Green IoT -- 3.1 Key Technologies of Green IoT -- 3.2 Application of Green IoT -- 4 IoT Big 7: IoT-Challenges and Problems -- 4.1 IoT Scalability.
4.2 Interoperability of IoT -- 4.3 IoT Reliability -- 4.4 IoT Efficiency -- 4.5 IoT Availability -- 4.6 IoT Software -- 4.7 IoT Security -- 5 Incorporating IoT and Cloud Computing for Addressing Intrinsic Challenges of IoT -- 5.1 Scalability Via Cloud Computing -- 5.2 Interoperability Through Cloud Computing -- 5.3 Functionality Via Cloud Infrastructure -- 5.4 Efficiency Through Cloud Computing -- 5.5 Availability -- 6 Summary and Conclusions -- References -- Quantitative Analysis of Industrial IoT System -- 1 Introduction -- 2 A Calculus for Probabilistic Wireless Network (PBL) -- 3 A Stochastic Routing Calculus -- 4 Syntax -- 5 Structural Equivalence -- 6 Reduction Semantics -- 7 Well-Formed Configurations -- 8 Equivalence of GR with Its Specification -- 9 Conclusion -- References -- Formal Verification of Industrial IoT System: A Behavioural Equivalence -- 1 Introduction -- 2 A Stochastic Routing Calculus -- 3 GR: A Behavioural Equivalence -- 4 Probabilistic Reduction Barbed Pre-congruence -- 5 A Labeled Transition System -- 6 Probabilistic Efficiency Pre-Bisimulation -- 7 An Observational Lts -- 8 Justifying Asynchronous Probabilistic Efficiency Pre-bisimulation Contextually -- 9 Conclusions -- References -- Steganography: Camouflaging Sensitive and Vulnerable Data -- 1 Introduction -- 1.1 Beginning of the Era of Steganography: The Prisoners Problem -- 1.2 A Generalized Framework of Steganography -- 1.3 Categorization in Steganography -- 1.4 Criteria for a Good Steganographic Approach -- 2 Case Studies in Literature -- 2.1 Spatial Domain Techniques -- 2.2 Transform Domain Techniques -- 3 Conclusion -- References -- Technologies for the Rehabilitation of People Affected with CVM: A State-of-the-Art Report -- 1 Introduction -- 2 Rehabilitation for People Affected by CVM -- 3 Available Technological Resources -- 3.1 Rehabilitative Technologies.
3.2 Assistive Technologies -- 4 Conclusions -- References -- Machine Learning Application: Sarcasm Detection Model -- 1 Introduction -- 2 Research Methodology -- 2.1 Parsing Dataset into DataFrames -- 2.2 Checking Null Values -- 2.3 Data Cleaning -- 2.4 Feature and Label Extraction -- 2.5 Stemming -- 2.6 TF-IDF Vectorization -- 2.7 Training and Testing of Data -- 2.8 Training and Testing of the Model -- 2.9 Setting up GUI Application Using Tkinter -- 3 Results and Discussion -- 4 Conclusion -- References -- Modern Technology on Building Marketing 4.0: Impact on Customer Engagement -- 1 Introduction -- 1.1 About Digital and Social Media Emergence -- 1.2 Emergence of Marketing 4.0 -- 2 About the Topic -- 3 The Conceptual Model: Design, Direct, Develop, Interventions, Innovation, and Capabilities (D3I2C) -- 4 Objectives -- 5 Literature Review -- 6 Research Methodology -- 7 Findings -- 7.1 Introduction to Questionnaire -- 7.2 Millennials' Attitude Toward Social Media -- 7.3 Awareness Toward Digital Marketing -- 7.4 Technology on Building Marketing 4.0 -- 8 Interpretation -- 9 Conclusion -- References -- Smart and Intelligent Chatbot Assistance for Future Industry 4.0 -- 1 Introduction -- 2 Related Work -- 2.1 Product Perspective -- 2.1.1 System Interfaces -- 2.1.2 Interfaces -- 2.1.3 Communication Interfaces -- 2.1.4 Site Adaptation Requirements -- 2.2 Product Functions -- 2.3 Assumptions and Dependencies -- 3 Architectural Design -- 3.1 Class Diagrams -- 3.2 Pizza Ordering Agent (Class Diagram) -- 3.3 Hotel Booking Agent (Class Diagram) -- 3.4 Data Flow Diagram -- 4 Implementation and Results -- 4.1 Results -- 5 Conclusion -- References -- Analyzing Subspace Clustering Approaches for High Dimensional Data -- 1 Introduction -- 2 Challenges in Subspace Clustering -- 3 Classification of Subspace Clustering Approaches.
4 Evaluation Measures for Subspace Clustering Algorithms -- 5 Literature -- 6 Empirical Assessment -- 7 Applications and Future Prospects -- 8 Conclusion -- References -- Ant Colony Optimization Technique in Soft Computational Data Research for NP-Hard Problems -- 1 Introduction -- 2 Soft Computing -- 3 Applications of Soft Computing -- 4 Ant Colony Optimization Technique (ACO) -- 4.1 Mathematical Model of ACO -- 5 Variations in ACO -- 6 Some Common Computational Problems Solved Using ACO -- 6.1 Travelling Salesman Problem -- 6.2 Job-Shop Scheduling Problem (JSP) -- 6.3 Quadratic Assignment Problem -- 7 Conclusion -- References -- Use of Kalman Filter and Its Variants in State Estimation: A Review -- 1 Introduction -- 2 Background -- 3 Mathematical Foundation of Kalman Filter -- 3.1 Extended Kalman Filter -- 3.2 Unscented Kalman Filter -- 3.3 Ensemble Kalman Filter -- 3.4 Particle Kalman Filter -- 3.5 Cubature Kalman Filter -- 3.6 Further Types of Kalman Filter -- 4 Discussion -- 5 Conclusion -- References -- Precoder and Combiner Optimization in mmWave Hybrid Beamforming Systems -- 1 Introduction -- 1.1 Multi-user MIMO Downlink System Model -- 1.2 mmWave MIMO Channel Model -- 1.3 Problem Formulation -- 2 Extended Orthogonal Matching Pursuit Method -- 3 Results and Discussions -- 4 Conclusion -- References -- Biometric Identification System: Security and Privacy Concern -- 1 Introduction -- 2 Biometric Modalities -- 2.1 Fingerprint Scan -- 2.2 Human Face -- 2.3 Hand Measurement -- 2.4 Palm Scan -- 2.5 IRIS Scan -- 2.6 Voice -- 3 Use of Software for Biometric Security -- 4 Various Issues in Biometric System -- 4.1 The Algorithm (Encryption) Used in Biometrics Is Weak -- 4.2 Size of Biometric Database Increases with Time -- 4.3 Size of Storage and Key Size -- 4.4 Cyber/Criminal Attacks -- 4.5 Factors Related with Environment -- 4.6 Foreign Particles.
4.7 Attack on Comparator -- 4.8 Template Got Attack by Virus -- 4.9 Medium of Communication -- 4.10 Decision May Be Altered -- 5 Methods of Dealing with Issues in Biometric System -- 5.1 Multimodal Biometrics -- 5.2 Touchless Fingerprint -- 5.3 Using Special Algorithm Having Enhanced Security Specification -- 5.4 Using Second Storage -- 5.5 Security of Database -- 5.6 Biometrics with a Password/OTP/Card Access/Pin -- 6 How Addition of Biometrics Enhance the Security -- 6.1 Fast and Reliable Verification System -- 6.2 Accountability of the Individual -- 6.3 High Efficiency -- 6.4 Convenient -- 6.5 Adoptability of Future Growth of the Organization -- 7 Middleware and Software's Used in Biometrics -- 7.1 FSI -- 7.2 Healthcare -- 7.3 Manufacturing Industry -- 7.4 Service Industry -- 7.5 Government Authorities -- 8 Future Biometric Technologies -- 8.1 On-Spot DNA Test -- 8.2 Brain Wave Scanning -- 9 Advantages of Biometric -- 9.1 Safety and Security -- 9.2 Accuracy -- 9.3 ROI -- 9.4 Scalability -- 9.5 Screening -- 10 Disadvantages of Biometric -- 10.1 Recognition of Physical Traits -- 10.2 Rate of Error -- 10.3 Cost -- 10.4 Delay -- 10.5 Complexity -- 11 Conclusion -- References -- Enabling Technologies: A Transforming Action on Healthcare with IoT a Possible Revolutionizing -- 1 Introduction -- 1.1 The IoT Is Growing Everywhere -- 1.2 Smart Home Dares to Make Sense -- 1.3 Improving IoT in Healthcare -- 1.4 Why Would the Industry Benefit from Using IoT? -- 1.5 Applied Internet of Things in Healthcare -- 2 The Advantages of IoT in Healthcare -- 2.1 Cancer Therapy -- 2.2 Diabetes Management -- 3 Challenges for IoT in Healthcare -- 4 Conclusion -- References -- Automated and Curated Sack Count Leveraging Video Analysis on Moving Objects -- 1 Introduction -- 2 Problem Statement -- 2.1 Related Work -- 3 Proposed Approach -- 3.1 Model Development.
3.1.1 Step 1: Problem Definition.
Record Nr. UNINA-9910506384903321
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors
Artificial intelligence for a sustainable industry 4.0 / / Shashank Awasthi [and three others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2021]
Descrizione fisica 1 online resource (311 pages)
Disciplina 628
Soggetto topico Sustainable engineering - Data processing
Artificial intelligence
ISBN 3-030-77070-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgement -- Contents -- About the Authors -- Possibilities of Industrial Trends and Business Benefits with Industry 4.0 Technology: A Survey -- 1 Introduction -- 2 How the Concept of Supply and Demand Applies to the Overall Economy? -- 3 Technology Road Map for Industry 4.0 -- 3.1 Smart Factory -- 3.2 Cargo Loading and Unloading -- 3.2.1 Formal integration platform -- 3.2.2 Technological Challenges and Accompanying Ranging of Data -- 3.2.3 Vertical Incorporation of Intelligent Development -- 3.3 A New Wave of Corporate Supply Chains -- 3.4 All the Way Through the Supply Chain -- 4 Aspects for IT Management to Consider -- 5 Concepts of Creativity -- 6 The Effective Administration of Creativity -- 7 Encompasses Every Facet of Our Lives from Social Media to E-Commerce -- 7.1 Collecting Data -- 7.2 Looking out Opportunities -- 7.3 Consistency -- 8 Conclusion -- References -- Impact of Internet of Things on Logistics Management: A Framework for Logistics Information System -- 1 Introduction -- 2 IoT Emergence and the Internet -- 3 Interaction of IoT and Human -- 4 Information Sharing in Logistics and Supply Chain -- 5 IoT for Logistics Information System -- 6 Benefits of IoT for Logistics -- 7 Innovation of Logistics in IoT Context -- 8 IoT Framework for Logistics Information System -- 9 IoT for Logistics Information System in Future -- 10 Conclusion -- References -- Green Internet of Things (G-IoT): An Exposition for Sustainable Technological Development -- 1 Overview -- 2 Internet of Things -- 2.1 The Technology Stack of IoT -- 2.2 IoT Stack: Connectivity Options -- 2.3 Empowering Technology for IoT -- 2.4 IoT Features -- 2.5 Architecture of IoT -- 2.6 Ecosystem of IoT -- 3 Green IoT -- 3.1 Key Technologies of Green IoT -- 3.2 Application of Green IoT -- 4 IoT Big 7: IoT-Challenges and Problems -- 4.1 IoT Scalability.
4.2 Interoperability of IoT -- 4.3 IoT Reliability -- 4.4 IoT Efficiency -- 4.5 IoT Availability -- 4.6 IoT Software -- 4.7 IoT Security -- 5 Incorporating IoT and Cloud Computing for Addressing Intrinsic Challenges of IoT -- 5.1 Scalability Via Cloud Computing -- 5.2 Interoperability Through Cloud Computing -- 5.3 Functionality Via Cloud Infrastructure -- 5.4 Efficiency Through Cloud Computing -- 5.5 Availability -- 6 Summary and Conclusions -- References -- Quantitative Analysis of Industrial IoT System -- 1 Introduction -- 2 A Calculus for Probabilistic Wireless Network (PBL) -- 3 A Stochastic Routing Calculus -- 4 Syntax -- 5 Structural Equivalence -- 6 Reduction Semantics -- 7 Well-Formed Configurations -- 8 Equivalence of GR with Its Specification -- 9 Conclusion -- References -- Formal Verification of Industrial IoT System: A Behavioural Equivalence -- 1 Introduction -- 2 A Stochastic Routing Calculus -- 3 GR: A Behavioural Equivalence -- 4 Probabilistic Reduction Barbed Pre-congruence -- 5 A Labeled Transition System -- 6 Probabilistic Efficiency Pre-Bisimulation -- 7 An Observational Lts -- 8 Justifying Asynchronous Probabilistic Efficiency Pre-bisimulation Contextually -- 9 Conclusions -- References -- Steganography: Camouflaging Sensitive and Vulnerable Data -- 1 Introduction -- 1.1 Beginning of the Era of Steganography: The Prisoners Problem -- 1.2 A Generalized Framework of Steganography -- 1.3 Categorization in Steganography -- 1.4 Criteria for a Good Steganographic Approach -- 2 Case Studies in Literature -- 2.1 Spatial Domain Techniques -- 2.2 Transform Domain Techniques -- 3 Conclusion -- References -- Technologies for the Rehabilitation of People Affected with CVM: A State-of-the-Art Report -- 1 Introduction -- 2 Rehabilitation for People Affected by CVM -- 3 Available Technological Resources -- 3.1 Rehabilitative Technologies.
3.2 Assistive Technologies -- 4 Conclusions -- References -- Machine Learning Application: Sarcasm Detection Model -- 1 Introduction -- 2 Research Methodology -- 2.1 Parsing Dataset into DataFrames -- 2.2 Checking Null Values -- 2.3 Data Cleaning -- 2.4 Feature and Label Extraction -- 2.5 Stemming -- 2.6 TF-IDF Vectorization -- 2.7 Training and Testing of Data -- 2.8 Training and Testing of the Model -- 2.9 Setting up GUI Application Using Tkinter -- 3 Results and Discussion -- 4 Conclusion -- References -- Modern Technology on Building Marketing 4.0: Impact on Customer Engagement -- 1 Introduction -- 1.1 About Digital and Social Media Emergence -- 1.2 Emergence of Marketing 4.0 -- 2 About the Topic -- 3 The Conceptual Model: Design, Direct, Develop, Interventions, Innovation, and Capabilities (D3I2C) -- 4 Objectives -- 5 Literature Review -- 6 Research Methodology -- 7 Findings -- 7.1 Introduction to Questionnaire -- 7.2 Millennials' Attitude Toward Social Media -- 7.3 Awareness Toward Digital Marketing -- 7.4 Technology on Building Marketing 4.0 -- 8 Interpretation -- 9 Conclusion -- References -- Smart and Intelligent Chatbot Assistance for Future Industry 4.0 -- 1 Introduction -- 2 Related Work -- 2.1 Product Perspective -- 2.1.1 System Interfaces -- 2.1.2 Interfaces -- 2.1.3 Communication Interfaces -- 2.1.4 Site Adaptation Requirements -- 2.2 Product Functions -- 2.3 Assumptions and Dependencies -- 3 Architectural Design -- 3.1 Class Diagrams -- 3.2 Pizza Ordering Agent (Class Diagram) -- 3.3 Hotel Booking Agent (Class Diagram) -- 3.4 Data Flow Diagram -- 4 Implementation and Results -- 4.1 Results -- 5 Conclusion -- References -- Analyzing Subspace Clustering Approaches for High Dimensional Data -- 1 Introduction -- 2 Challenges in Subspace Clustering -- 3 Classification of Subspace Clustering Approaches.
4 Evaluation Measures for Subspace Clustering Algorithms -- 5 Literature -- 6 Empirical Assessment -- 7 Applications and Future Prospects -- 8 Conclusion -- References -- Ant Colony Optimization Technique in Soft Computational Data Research for NP-Hard Problems -- 1 Introduction -- 2 Soft Computing -- 3 Applications of Soft Computing -- 4 Ant Colony Optimization Technique (ACO) -- 4.1 Mathematical Model of ACO -- 5 Variations in ACO -- 6 Some Common Computational Problems Solved Using ACO -- 6.1 Travelling Salesman Problem -- 6.2 Job-Shop Scheduling Problem (JSP) -- 6.3 Quadratic Assignment Problem -- 7 Conclusion -- References -- Use of Kalman Filter and Its Variants in State Estimation: A Review -- 1 Introduction -- 2 Background -- 3 Mathematical Foundation of Kalman Filter -- 3.1 Extended Kalman Filter -- 3.2 Unscented Kalman Filter -- 3.3 Ensemble Kalman Filter -- 3.4 Particle Kalman Filter -- 3.5 Cubature Kalman Filter -- 3.6 Further Types of Kalman Filter -- 4 Discussion -- 5 Conclusion -- References -- Precoder and Combiner Optimization in mmWave Hybrid Beamforming Systems -- 1 Introduction -- 1.1 Multi-user MIMO Downlink System Model -- 1.2 mmWave MIMO Channel Model -- 1.3 Problem Formulation -- 2 Extended Orthogonal Matching Pursuit Method -- 3 Results and Discussions -- 4 Conclusion -- References -- Biometric Identification System: Security and Privacy Concern -- 1 Introduction -- 2 Biometric Modalities -- 2.1 Fingerprint Scan -- 2.2 Human Face -- 2.3 Hand Measurement -- 2.4 Palm Scan -- 2.5 IRIS Scan -- 2.6 Voice -- 3 Use of Software for Biometric Security -- 4 Various Issues in Biometric System -- 4.1 The Algorithm (Encryption) Used in Biometrics Is Weak -- 4.2 Size of Biometric Database Increases with Time -- 4.3 Size of Storage and Key Size -- 4.4 Cyber/Criminal Attacks -- 4.5 Factors Related with Environment -- 4.6 Foreign Particles.
4.7 Attack on Comparator -- 4.8 Template Got Attack by Virus -- 4.9 Medium of Communication -- 4.10 Decision May Be Altered -- 5 Methods of Dealing with Issues in Biometric System -- 5.1 Multimodal Biometrics -- 5.2 Touchless Fingerprint -- 5.3 Using Special Algorithm Having Enhanced Security Specification -- 5.4 Using Second Storage -- 5.5 Security of Database -- 5.6 Biometrics with a Password/OTP/Card Access/Pin -- 6 How Addition of Biometrics Enhance the Security -- 6.1 Fast and Reliable Verification System -- 6.2 Accountability of the Individual -- 6.3 High Efficiency -- 6.4 Convenient -- 6.5 Adoptability of Future Growth of the Organization -- 7 Middleware and Software's Used in Biometrics -- 7.1 FSI -- 7.2 Healthcare -- 7.3 Manufacturing Industry -- 7.4 Service Industry -- 7.5 Government Authorities -- 8 Future Biometric Technologies -- 8.1 On-Spot DNA Test -- 8.2 Brain Wave Scanning -- 9 Advantages of Biometric -- 9.1 Safety and Security -- 9.2 Accuracy -- 9.3 ROI -- 9.4 Scalability -- 9.5 Screening -- 10 Disadvantages of Biometric -- 10.1 Recognition of Physical Traits -- 10.2 Rate of Error -- 10.3 Cost -- 10.4 Delay -- 10.5 Complexity -- 11 Conclusion -- References -- Enabling Technologies: A Transforming Action on Healthcare with IoT a Possible Revolutionizing -- 1 Introduction -- 1.1 The IoT Is Growing Everywhere -- 1.2 Smart Home Dares to Make Sense -- 1.3 Improving IoT in Healthcare -- 1.4 Why Would the Industry Benefit from Using IoT? -- 1.5 Applied Internet of Things in Healthcare -- 2 The Advantages of IoT in Healthcare -- 2.1 Cancer Therapy -- 2.2 Diabetes Management -- 3 Challenges for IoT in Healthcare -- 4 Conclusion -- References -- Automated and Curated Sack Count Leveraging Video Analysis on Moving Objects -- 1 Introduction -- 2 Problem Statement -- 2.1 Related Work -- 3 Proposed Approach -- 3.1 Model Development.
3.1.1 Step 1: Problem Definition.
Record Nr. UNISA-996464424503316
Cham, Switzerland : , : Springer, , [2021]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Emerging Threats and Countermeasures in Cybersecurity
Emerging Threats and Countermeasures in Cybersecurity
Autore Shrivastava Gulshan
Edizione [1st ed.]
Pubbl/distr/stampa Newark : , : John Wiley & Sons, Incorporated, , 2024
Descrizione fisica 1 online resource (533 pages)
Disciplina 005.8
Altri autori (Persone) OjhaRudra Pratap
AwasthiShashank
SharmaKavita
BansalHimani
Collana Advances in Antenna, Microwave, and Communication Engineering Series
Soggetto topico Computer security
ISBN 9781394230587
1394230583
9781394230600
1394230605
9781394230594
1394230591
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Emerging Threats and Trends in Digital Forensics and Cybersecurity -- 1.1 Introduction -- 1.2 Threats Faced by Digital Forensics -- 1.2.1 Technical Challenges -- 1.2.2 Operational Challenges -- 1.2.3 Personnel-Related Challenges -- 1.3 Cybersecurity Threats in 2023 -- 1.3.1 Social Engineering -- 1.3.2 Third-Party Exposure -- 1.3.3 Configuration Mistakes -- 1.3.4 Poor Cyber Hygiene -- 1.3.5 Cloud Vulnerabilities -- 1.3.6 Mobile Device Vulnerabilities -- 1.3.7 Internet of Things (IoT) -- 1.3.8 Ransomware -- 1.3.9 Poor Data Management -- 1.3.10 Inadequate Post-Attack Procedures -- 1.4 New Era of Technology and Their Risks -- 1.4.1 Autonomous Vehicles -- 1.4.2 Artificial Intelligence -- 1.4.3 Robotics and Robotics Process Automation -- 1.4.4 Internet of Things (IoT) -- 1.4.5 5G -- 1.5 Challenges for Digital Forensics -- 1.5.1 High Speed and Volumes -- 1.5.2 Explosion Complexity -- 1.5.3 Development of Standards -- 1.5.4 Privacy-Preserving Investigations -- 1.5.5 Legitimacy -- 1.5.6 Rise of Anti-Forensic Techniques -- 1.6 Impact of Mobile Gadgets on Cybersecurity -- 1.7 The Vulnerabilities in Wireless Mobile Data Exchange -- 1.7.1 Interception of Data -- 1.7.2 Malware Attacks -- 1.7.3 Rogue Access Points -- 1.7.4 Denial of Service Attacks -- 1.7.5 Weak Encryption -- 1.8 Network Segmentation and its Applications -- 1.8.1 Applications -- 1.8.2 Benefits of Network Segmentation -- 1.9 Relationship Between Privacy and Security -- 1.9.1 Security -- 1.9.2 Privacy -- 1.10 Recent Trends in Digital Forensics -- 1.10.1 Cloud Forensics -- 1.10.2 Social Media Forensics -- 1.10.3 IoT Forensics -- 1.11 Opportunities in this Field -- 1.11.1 USB Forensics -- 1.11.2 Intrusion Detection -- 1.11.3 Artificial Intelligence (AI) -- 1.12 Future Enhancements in Digital Forensics.
1.13 Cybersecurity and Cyber Forensics in Smart Cities -- 1.13.1 Smart Cities are Entitled to Cyber-Physical Systems -- 1.13.1.1 Administrative -- 1.13.1.2 Complex CPS in a Glimpse -- 1.13.1.3 IoT Technologies in Smart Cities of the Future -- 1.14 Network Security and Forensics -- 1.15 Software and Social Engineering Attacks on RSA -- 1.16 Cyber Threats and Cybersecurity -- 1.17 Conclusion -- Bibliography -- Chapter 2 Toward Reliable Image Forensics: Deep Learning-Based Forgery Detection -- 2.1 Introduction -- 2.2 Fundamentals of Image Forensics -- 2.2.1 History -- 2.2.2 Image Forgery Types -- 2.2.3 Classical Image Forensics Techniques -- 2.3 Deep Learning in Image Forensics -- 2.3.1 Convolutional Neural Networks (CNNs) -- 2.3.2 Generative Adversarial Networks (GANs) -- 2.4 Datasets of Image Forgery Detection -- 2.5 Feature Extraction and Representation -- 2.6 Model Training and Evaluation -- 2.6.1 Model Training -- 2.6.2 Loss Functions -- 2.6.3 Evaluation Metrics -- 2.7 Challenges and Future Scope -- 2.8 Conclusion -- References -- Chapter 3 Understanding and Mitigating Advanced Persistent Threats in a Dynamic Cyber Landscape -- 3.1 Introduction -- 3.1.1 Advanced -- 3.1.2 Persistent -- 3.1.3 Threat -- 3.1.3.1 Vulnerability -- 3.1.3.2 Risk -- 3.2 APT Lifecycle -- 3.3 Characteristics and Methods of APTs -- 3.4 APT Detection -- 3.5 Mitigation Techniques -- 3.5.1 Application Control/Dynamic Whitelisting -- 3.5.2 Vulnerability Assessment -- 3.5.3 Patch Management -- 3.5.4 Automated Exploit Prevention -- 3.6 Case Study: CozyDuke APT -- Conclusion -- References -- Chapter 4 Class-Imbalanced Problems in Malware Analysis and Detection in Classification Algorithms -- 4.1 Introduction -- 4.2 Background -- 4.2.1 Malware Analysis and Types -- 4.2.2 Class-Imbalanced Problem -- 4.2.3 Imbalanced Techniques -- 4.3 Related Work.
4.4 Detailed Overview of the Methodology -- 4.4.1 Dataset Information -- 4.4.2 Different Evaluation Metrics Used for Class-Imbalanced Study -- 4.4.3 Machine Learning Classifiers -- 4.4.4 Exiting Methods Used for Handling the Class Imbalanced -- 4.5 Discussion and Challenges -- 4.5.1 Research Question -- 4.5.2 Challenges -- 4.6 Conclusion -- References -- Chapter 5 Malware Analysis and Detection: New Approaches and Techniques -- 5.1 Introduction -- 5.2 Malware -- 5.2.1 History of Malware -- 5.2.2 Different Forms of Malware -- 5.2.3 Purpose of Malware Analysis -- 5.3 Case Studies -- 5.4 Future Aspects -- 5.5 Conclusion -- References -- Chapter 6 State-of-the-Art in Ransomware Analysis and Detection -- 6.1 Introduction -- Evolution -- Lifecycle -- Infection Method -- Targets of Ransomware Attacks -- Payment Process and Method -- Ransomware Analysis -- Ransomware Detection -- Ransomware Prevention -- Recovery -- Characteristics -- Difficulties -- Impact of Ransomware Attacks -- Statistics -- Conclusion -- References -- Chapter 7 Cyber-Physical System Security: Challenges and Countermeasures -- 7.1 Introduction -- 7.1.1 Definition and Characteristics of CPS -- 7.1.2 Importance and Applications of CPS -- 7.1.3 Overview of CPS Security Concerns -- 7.2 Challenges in CPS Security -- 7.2.1 Threat Landscape in CPS -- 7.2.2 Vulnerabilities in CPS -- 7.2.2.1 Interconnected System Vulnerabilities -- 7.2.2.2 Lack of Standardized Security Frameworks -- 7.2.2.3 Legacy System Compatibility Issues -- 7.2.2.4 Human Factors and Social Engineering -- 7.3 Security Risks and Consequences -- 7.3.1 Financial Losses and Economic Impact -- 7.3.2 Public Safety and Critical Infrastructure Risks -- 7.3.3 Privacy and Data Breaches -- 7.4 Key Considerations for CPS Security -- 7.4.1 Secure Design and Architecture Principles -- 7.4.1.1 Defense-in-Depth Strategy.
7.4.1.2 Secure Communication Protocols -- 7.4.1.3 Access Control and Authentication Mechanisms -- 7.4.2 Threat Modeling and Risk Assessment -- 7.4.3 Intrusion Detection and Prevention Systems (IDPS) -- 7.4.4 Secure Software Development Practices -- 7.4.4.1 Secure Coding Guidelines -- 7.4.4.2 Code Reviews and Vulnerability Testing -- 7.5 Countermeasures for CPS Security -- 7.5.1 Network Security Measures -- 7.5.1.1 Firewalls and Network Segmentation -- 7.5.1.2 IDPS -- 7.5.2 Physical Security Controls -- 7.5.2.1 Access Controls and Physical Barriers -- 7.5.2.2 Surveillance and Monitoring Systems -- 7.5.3 Incident Response and Recovery Plans -- 7.5.3.1 Incident Handling Procedures -- 7.5.3.2 Backup and Disaster Recovery Strategies -- 7.5.4 Security Awareness and Training Programs -- 7.6 Case Studies and Examples -- 7.6.1 Case Study 1: Industrial Control System (ICS) Security -- 7.6.1.1 Countermeasures -- 7.6.2 Case Study 2: Smart Cities and Infrastructure Protection -- 7.6.2.1 Countermeasures -- 7.6.3 Case Study 3: Autonomous Vehicles and Transportation Systems -- 7.6.3.1 Countermeasures -- 7.7 Future Directions and Emerging Technologies -- 7.7.1 Impact of Emerging Technologies on CPS Security -- 7.7.2 Challenges and Opportunities in Securing CPS in the Future -- 7.8 Conclusion -- References -- Chapter 8 Unraveling the Ethical Conundrum: Privacy Challenges in the Realm of Digital Forensics -- 8.1 Introduction -- 8.2 Fundamental Concepts in Digital Forensics -- 8.3 Privacy Concerns in AI Technology: Security Systems and Cyber Forensics -- 8.4 Maintaining Integrity of Evidence in Forensic Investigations -- 8.5 Ethical Obligations of Forensic Investigators -- 8.6 Conclusion -- References -- Chapter 9 IoT and Smart Device Security: Emerging Threats and Countermeasures -- 9.1 Introduction -- 9.2 The Growth of IoT and Smart Devices.
9.3 Emerging Threat Landscape -- 9.4 Device Vulnerabilities and Exploits -- 9.5 Data Privacy and Leakage -- 9.5.1 Data Privacy Concerns in IoT -- 9.5.2 Data Leakage Concerns in IoT -- 9.6 Network Attacks and Amplification -- 9.6.1 Network Attacks in IoT -- 9.6.2 Amplification Attacks in IoT -- 9.6.3 Preventive Measures and Mitigation -- 9.7 Physical Attacks on Smart Devices -- 9.8 Supply Chain Risks in IoT Ecosystem -- 9.9 Lack of Standardization in IoT Security -- 9.10 Countermeasures and Best Practices -- 9.11 Conclusion and Future Directions -- 9.11.1 Future Directions and Countermeasures -- References -- Chapter 10 Advanced Security for IoT and Smart Devices: Addressing Modern Threats and Solutions -- 10.1 Introduction -- 10.1.1 Overview of IoT and Smart Devices -- 10.1.2 Importance of Security in IoT and Smart Devices -- 10.1.3 Scope of the Chapter -- 10.2 IoT and Smart Device Landscape -- 10.2.1 Growth and Adoption of IoT and Smart Devices -- 10.2.2 Types and Examples of IoT and Smart Devices -- 10.2.3 Challenges in Securing IoT and Smart Devices -- 10.3 Emerging Threats in IoT and Smart Device Security -- 10.3.1 Malware and Ransomware Attacks -- 10.3.2 Device Exploitation and Hijacking -- 10.3.3 Data Breaches and Privacy Concerns -- 10.3.4 Distributed Denial of Service (DDoS) Attacks -- 10.3.5 Supply Chain Attacks -- 10.3.6 Insider Threats -- 10.3.7 Physical Security Risks -- 10.4 Vulnerabilities in IoT and Smart Devices -- 10.4.1 Insecure Communication Protocols -- 10.4.2 Weak Authentication and Authorization -- 10.4.3 Lack of Security Updates and Patch Management -- 10.4.4 Default or Hardcoded Credentials -- 10.4.5 Lack of Device Integrity Verification -- 10.4.6 Insufficient Encryption -- 10.4.7 Inadequate Access Controls -- 10.5 Countermeasures and Best Practices -- 10.5.1 Secure Device Design and Development.
10.5.2 Robust Authentication and Access Controls.
Record Nr. UNINA-9911019501303321
Shrivastava Gulshan  
Newark : , : John Wiley & Sons, Incorporated, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable Computing : Transforming Industry 4. 0 to Society 5. 0 / / Shashank Awasthi [and five others], editors
Sustainable Computing : Transforming Industry 4. 0 to Society 5. 0 / / Shashank Awasthi [and five others], editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2023]
Descrizione fisica 1 online resource (352 pages)
Disciplina 658.4038028563
Soggetto topico Computers - Environmental aspects
Industry 4.0
Society 5.0
ISBN 3-031-13577-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgement -- Contents -- About the Editors -- A Review on Renewable Energy Sources, Potential and Policy in India -- Abbreviations -- 1 Introduction -- 2 Available Conventional Energy in India: Overview -- 2.1 Generation From Traditional Sources in India -- 2.1.1 Coal/Lignite -- 2.1.2 Hydro -- 2.1.3 Nuclear -- 2.1.4 Gas -- 3 Energy Scenario During 12th Five-Year Plan (2012-2017) [1] -- 4 Added Capacity Attained for the Duration of 12th Plan (Not Involved in the Targeted Capacity of 88,537 MW) [1, 3] -- 4.1 A Cooperative Analysis of 12th Plan with Earlier Five-Year Plans -- 4.2 Slipped Projects and Causes of Slippage from 12th Plan Capacity Addition Target [1] -- 5 Peak Demand and Energy Requisite Prediction -- 6 Renewable Energy Sources: Potential in India -- 6.1 Solar Energy -- 6.2 Wind Energy -- 6.3 Biomass Energy -- 6.4 Small Hydro Power (SHP) -- 6.5 Ocean Surface Waves and Tidal Power -- 6.6 Installed RES Potential in India -- 7 Capacity Addition from RES in 12th Plan -- 8 RES Policy of India -- 9 Recent Renewable Energy Initiatives -- 9.1 Solar Parks -- 9.2 Solar Cities -- 9.3 Solar Pump -- 10 Other Programs/Policies/Schemes -- 11 Future Potential of Renewable Energy in India -- 11.1 Renewable Energy Target by 2022 -- 12 Projection of Renewable Energy Generation -- 12.1 Perspective Plan 2022 -- 12.2 Perspective Plan for Grid-Interactive Renewable Power -- 12.3 Perspective Plan for Renewable Power for Urban, Industrial, and Commercial Applications -- 12.4 Medium Term (2032) Deployment Goals -- 13 Conclusion -- 14 Future Work -- References -- Analysis of Brain Signals to Forecast Motor Intentions Using Artificial Intelligence -- 1 Introduction -- 1.1 State of the Art -- 1.2 Our Proposal -- 2 Material and Methods -- 2.1 Database -- 2.2 Pre-processing -- 2.3 Feature Extraction -- 2.4 Classifiers -- 2.4.1 Decision Trees.
2.4.2 Linear Discriminant Analysis -- 2.4.3 Logistic Analysis -- 2.4.4 Support Vector Machine -- 2.4.5 K-Nearest Neighbors -- 2.4.6 Ensemble Methods -- 2.4.7 Neural Networks -- 3 Methodology -- 3.1 Feature Extraction Algorithm -- 4 Results and Discussion -- 4.1 Results -- 4.2 Discussion -- 5 Conclusions -- References -- Automated Detection of Covid-19 Waves with Computerized Tomography Scan Using Deep Learning -- 1 Introduction -- 2 Related Studies -- 2.1 Molecular RT-PCR Test -- 2.2 RAT Tests -- 2.3 Serological Tests -- 3 ML Algorithm Focused on Diagnosis Using CT Scan Images -- 3.1 Multiple Instance Learning (MIL) -- 3.2 Why Deep Learning over Machine Learning -- 4 DL Algorithm Focused on Diagnosis Using CT Scan Images -- 4.1 Deep Neural Network (DNN) -- 4.2 Convolutional Neural Network -- 4.3 Deep Convolutional Neural Network (DCNN) -- 4.4 Transfer Learning Techniques in Deep Learning -- 5 Conclusion -- References -- Internet of Things (IoT) in the Agriculture Sector: Challenges and Solutions -- 1 What Is Advance Agriculture? -- 2 Why Is It Necessary to Adapt to the Advancement of Agriculture? -- 3 Benefits of Using IoT in Agriculture -- 4 Infusion of Internet of Things in Agriculture -- 5 Challenges Encountered in Infusion of IoT in Agriculture -- References -- Implementation of Women's Self-Security System Using IoT-Based Device -- 1 Introduction -- 2 Existing System -- 3 Proposed System -- 4 Methodology -- 5 Result and Discussion -- 6 Conclusion -- References -- Evolution of Hadoop and Big Data Trends in Smart World -- 1 Introduction to Big Data -- 2 The Three V's -- 3 Challenges with Big Data -- 4 Hadoop Architecture: HDFS and Map-Reduce -- 5 HDFS -- 5.1 Features of HDFS -- 5.2 Storage in HDFS -- 6 MapReduce -- 7 Hadoop Ecosystem and Components -- 7.1 YARN (Yet Another Resource Negotiator) -- 7.2 Pig -- 7.3 Hive -- 7.4 HBase -- 7.5 Cassandra.
7.6 Sqoop and Flume -- 7.7 Apache Spark -- 8 Hadoop 3.0 Upgradation -- 9 Applications and Future -- 9.1 Predictive Policing -- 9.2 Unique Identity Project: From Cradle to Grave -- 9.3 Intelligent Transportation System -- 9.4 Smart Meters -- References -- Experimental Investigation of Eco-enzyme and Its Application for Removal of Foul Odour and Organic Impurities -- 1 Introduction -- 2 Materials and Methods -- 3 Results -- 3.1 Laboratory Results -- 3.1.1 Sample Collection -- 3.2 Field Results -- 3.2.1 Barapullah Drain, Delhi (16 February to 9 March 2016) -- 3.2.2 Drains at Pune -- 3.2.3 Sanjay Park, East Delhi -- 3.2.4 Ponds in Chennai -- 3.2.5 STP at Chandigarh -- 3.2.6 Drains of Azamgarh City -- 3.2.7 Garbage Dump Yard at Ghaziabad, UP -- 3.2.8 Two Garbage Dump Yards at Dehradun (Uttarakhand) -- 3.2.9 Garbage Dump Yard at Akola (Maharashtra) -- 4 Conclusions -- References -- Sign Language Recognition Using AI -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Methodology -- 3.1 Implementation Model -- 4 Results -- 5 Conclusion, Limitations, and Future Scope -- 5.1 Conclusion -- 5.2 Limitations -- 5.3 Future Scope -- References -- Data Leakage Detection and Prevention Using Cloud Computing -- 1 Introduction -- 1.1 Motivation -- 2 Data Loss Prevention -- 2.1 Limitations of Cloud DLP -- 3 Related Work -- 3.1 Watermarking Technique -- 3.2 Fake Objects Method -- 3.3 Adversary Model -- 4 Secure Hashing Algorithm (SHA) -- 5 Proposed Model -- 5.1 Data Allocation -- 5.2 Fake Object Module -- 5.3 Optimization Module -- 5.4 Data Distribution Module -- 6 Conclusion -- References -- To Brace Society 5.0: Enhanced Reliability with a Cost-Effective Protocol for Underwater Wireless Sensor Network -- 1 Introduction -- 2 Literature Review -- 3 System Model -- 3.1 Transmission-Power and SNR -- 3.2 Signal-to-Noise Ratio and PDR -- 4 Proposed Model.
4.1 Initial Phase -- 4.2 Graph Building -- 4.3 Transmission Phase -- 5 Results -- 5.1 Evaluation of SNR -- 5.2 Evaluation of BER -- 5.3 Evaluation of PDR -- 6 Conclusion -- References -- A Novel Algorithm for Reconfigurable Architecture for Software-Defined Radio Receiver on Baseband Processor for Demodulation -- 1 Introduction -- 2 Background -- 2.1 Baseband Demodulation -- 2.2 OFDM -- 2.3 Channel Equalization -- 2.4 Phase Offset Correction -- 2.5 QAM (Quadrature Amplitude Modulation) Demapping -- 3 Algorithm Analysis -- 3.1 Dataflow for Channel Selection/FFT -- 3.2 Signal Flow Graph for FIR/FFT -- 4 Architecture Design Approach -- 4.1 Reconfigurability -- 4.2 Data Path -- 4.3 The Communication Interface -- 4.4 The Processing Part -- 4.5 The Storage Part -- 4.6 The Configuration Part -- 4.7 Control Section -- 4.8 Configuration Unit -- 5 Algorithm Mapping -- 5.1 Mapping of Matched FIR Filter -- 5.2 Mapping of FFT -- 6 Synthesis and Evaluation -- 6.1 Synthesis Results for the SDR Receiver -- 6.2 Comparison of Proposed Design with Montium TP -- 6.3 Comparison of Different Implementations -- 7 Conclusions -- 8 Future Work -- References -- Methods and Application of 3D Printing in Implantable MedicalDevices -- 1 Introduction -- 2 3D Printing Manufacturing Process -- 2.1 Stereolithography -- 2.2 Laminated Object Manufacturing -- 2.3 Selective Laser Sintering (SLS) -- 2.4 Fused Deposition Modeling -- 2.5 3D Printing -- 2.6 Photopolymer Jetting -- 2.7 Powder Binder Printer -- 3 Importance of 3D Printing (Medical Field) -- 3.1 3D Printing Materials (Implantable Medical Device) -- 3.1.1 Polymer Materials -- 3.1.2 Metal Materials -- 3.1.3 Ceramic Materials -- 3.1.4 Composite Materials -- 3.1.5 Derived Materials -- 3.2 Medical Devices Printed in 3D -- 3.2.1 Vascular Stents -- 3.2.2 Prosthetic Valve -- 3.2.3 Artificial Joint Prostheses.
3.2.4 Engineering of Hard and Soft Tissues -- 3.2.5 Peripheral Hip Diseases -- 4 Conclusion -- References -- Fuzzy-Based Hierarchical Routing Protocol for Wireless Sensor Networks -- 1 Introduction -- 2 Existing Systems -- 3 Proposed Model -- 4 System Model -- 5 Implementation and Results -- 6 Conclusion -- References -- A Review of AI-Based Diagnosis of Multiple Thoracic Diseases in Chest Radiography -- 1 Introduction -- 2 Important Design Factors -- 2.1 Learning Forms -- 2.2 Network Architecture -- 2.3 Training Types -- 3 Multiple Disease Classification -- 3.1 Evaluation Metrics Used -- 3.2 Popular Dataset -- 3.3 State-of-the-Art Models -- 4 Discussion and Future Trends -- 5 Conclusion -- References -- Introduction to Deep Learning -- 1 Introduction -- 2 Machine Learning Versus Deep Learning -- 3 The Architecture of Deep Learning -- 3.1 Supervised Learning -- 3.2 Convolutional Neural Network -- 3.3 Recurrent Neural Networks -- 3.4 LSTM Networks -- 3.5 GRU Networks -- 3.6 Unsupervised Deep Learning -- 3.7 Self-Organized Map -- 3.8 Autoencoder -- 3.9 Restricted Boltzmann Machine -- 3.10 Deep Belief Network (DBN) -- 3.11 Deep Stacking Network (DSN) -- 4 Applications -- References -- Methodological Assessment of Various Algorithm Types for Load Balancing in Cloud Computing -- 1 Introduction -- 2 Load Balancing -- 3 Data Source -- 3.1 Search Criteria -- 3.2 Evaluation of the Level of Quality -- 4 Methods for Having to Balance Workloads -- 4.1 There Are Two Varieties of It Based on the Current State of the System -- 4.2 Load Balancing Metrics [18] -- 5 Comparative Study (Fig. 8) -- 6 Conclusion -- References -- Extraction Techniques and Evaluation Measures for Extractive Text Summarisation -- 1 Introduction -- 2 Related Work on Extractive Text Summarisation -- 3 Extractive vs Abstractive Summarisation Method.
3.1 Steps Followed by Extractive-Based Summarisation Methods.
Record Nr. UNISA-996547972803316
Cham, Switzerland : , : Springer, , [2023]
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Sustainable Computing : Transforming Industry 4.0 to Society 5.0 / / edited by Shashank Awasthi, Goutam Sanyal, Carlos M. Travieso-Gonzalez, Pramod Kumar Srivastava, Dinesh Kumar Singh, Rama Kant
Sustainable Computing : Transforming Industry 4.0 to Society 5.0 / / edited by Shashank Awasthi, Goutam Sanyal, Carlos M. Travieso-Gonzalez, Pramod Kumar Srivastava, Dinesh Kumar Singh, Rama Kant
Edizione [1st ed. 2023.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Descrizione fisica 1 online resource (352 pages)
Disciplina 658.4038028563
004
Soggetto topico Telecommunication
Cooperating objects (Computer systems)
Computational intelligence
Artificial intelligence
Communications Engineering, Networks
Cyber-Physical Systems
Computational Intelligence
Artificial Intelligence
ISBN 9783031135774
3031135776
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Introduction -- Sustainable computing in Healthcare -- IoT for Contemporary Life -- Artificial Intelligence in Multimedia Technology -- Artificial Intelligence in Security and Surveillance -- Artificial Intelligence in Big Data Analytics -- Engineering design for sustainable development using IOT/AI -- Intelligent and Smart Grid Systems -- Sustainable computing in Energy conservation -- Sustainable computing in Society 5.0 -- Artificial Intelligence in Geo-Politics -- Cyber Physical System for Social Problems -- Artificial Intelligence and Machine Learning in Healthcare -- Open Challenges in Society 5.0 -- Economic empowerment using AI/ML/IoT -- Machine Learning and Computing for Sustainable Development Goals -- Deep Learning for Society 5.0 -- Intelligent and Smart Farming for Society 5.0 -- Technological Innovation in Industry 4.0 -- Artificial Intelligence in E-Governance -- Deep Learning in E-Governance -- Conclusion.
Record Nr. UNINA-9910637707503321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui