top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational Sciences and Sustainable Technologies : First International Conference, ICCSST 2023, Bangalore, India, May 8–9, 2023, Revised Selected Papers / / edited by Sagaya Aurelia, Chandra J., Ashok Immanuel, Joseph Mani, Vijaya Padmanabha
Computational Sciences and Sustainable Technologies : First International Conference, ICCSST 2023, Bangalore, India, May 8–9, 2023, Revised Selected Papers / / edited by Sagaya Aurelia, Chandra J., Ashok Immanuel, Joseph Mani, Vijaya Padmanabha
Edizione [1st ed. 2024.]
Pubbl/distr/stampa Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Descrizione fisica 1 online resource (516 pages)
Disciplina 006.3
Collana Communications in Computer and Information Science
Soggetto topico Artificial intelligence
Database management
Machine learning
Application software
Computer engineering
Computer networks
Artificial Intelligence
Database Management System
Machine Learning
Computer and Information Systems Applications
Computer Engineering and Networks
Computer Communication Networks
ISBN 3-031-50993-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Organization -- Contents -- Performance Evaluation of Metaheuristics-Tuned Deep Neural Networks for HealthCare 4.0 -- 1 Introduction -- 2 Background and Related Works -- 3 Methods -- 3.1 Original Sine Cosine Algorithm (SCA) -- 3.2 SCA Bat Search Algorithm (SCA-BS) -- 4 Experiments and Comparative Analysis -- 4.1 Liver Disorder Dataset Details -- 4.2 Dermatology Dataset Details -- 4.3 Hepatitis Dataset Details -- 4.4 Experimental Setup -- 4.5 Evaluation Metrics -- 5 Results and Discussion -- 5.1 Liver Disorder Dataset Results -- 5.2 Dermatology Dataset Results -- 5.3 Hepatitis Dataset Results -- 6 Conclusion -- References -- Early Prediction of At-Risk Students in Higher Education Institutions Using Adaptive Dwarf Mongoose Optimization Enabled Deep Learning -- 1 Introduction -- 2 Motivation -- 2.1 Literature Survey -- 2.2 Major Challenges -- 3 Proposed ADMOADNFN for Prediction At-Risk Students -- 3.1 Data Acquisition -- 3.2 Data Transformation -- 3.3 Feature Selection -- 3.4 Data Augmentation (Oversampling) -- 3.5 Performance Prediction to Determine at Risk Students -- 4 Results and Discussion -- 4.1 Experimental Results -- 4.2 Dataset Description -- 4.3 Evaluation Metrics -- 4.4 Comparative Techniques -- 4.5 Comparative Discussion -- 5 Conclusion -- References -- Decomposition Aided Bidirectional Long-Short-Term Memory Optimized by Hybrid Metaheuristic Applied for Wind Power Forecasting -- 1 Introduction -- 2 Related Works -- 2.1 Variational Mode Decomposition VMD -- 2.2 Bidirectional Long Short-Term Memory (BiLSTM) -- 2.3 Metaheuristics Optimization -- 3 Methods -- 3.1 Original Reptile Search Algorithm (RSA) -- 3.2 Hybrid RSA (HRSA) -- 4 Experimental Setup -- 4.1 Dataset -- 4.2 Metrics -- 4.3 Setup -- 5 Results and Discussion -- 6 Conclusion -- References.
Interpretable Drug Resistance Prediction for Patients on Anti-Retroviral Therapies (ART) -- 1 Introduction -- 2 Background and Motivation -- 3 Literature Review -- 3.1 Research Gaps -- 3.2 Paper Contributions -- 4 Data Analysis and Methods -- 4.1 Dataset Description -- 4.2 Data Preparation and Exploratory Data Analysis -- 4.3 Methodology -- 4.4 Model Evaluation -- 4.5 Feature Importance -- 5 Results and Discussion -- 5.1 ML Model Selection and Optimization -- 5.2 ML Model Selection Accountability -- 6 Conclusion and Future Works -- References -- Development of a Blockchain-Based Vehicle History System -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Design -- 4.1 Manufacturer-Dealer Workflow -- 4.2 Vehicle Sale/ Registration Workflow -- 4.3 Vehicle Transfer Workflow -- 4.4 Vehicle Resale Workflow -- 5 Testing and Evaluation -- 6 Results and Discussion -- 7 Conclusions -- References -- Social Distancing and Face Mask Detection Using YOLO Object Detection Algorithm -- 1 Introduction -- 2 Related Works -- 3 Relevant Methodologies -- 3.1 Convolutional Neural Network (CNN) -- 3.2 Object Detection -- 3.3 YOLO Object Detection Model -- 3.4 Faster R-CNN -- 3.5 Single-Shot Detector (SSD) -- 3.6 AlexNet -- 3.7 Inception V3 -- 3.8 MobileNet -- 3.9 Visual Geometry Group (VGG) -- 4 Implementation -- 4.1 Face Mask Detectıon -- 4.2 Socıal Dıstance Detectıon -- 5 Results -- 6 Conclusion and Future Scope -- References -- Review on Colon Cancer Prevention Techniques and Polyp Classification -- 1 Introduction -- 1.1 Objectives -- 2 Design -- 3 Setting and Participants -- 4 Methods -- 5 Results -- 6 Conclusion and Implications -- References -- Security Testing of Android Applications Using Drozer -- 1 Introduction -- 2 Methodology -- 2.1 Online Questionnaire -- 2.2 Emulation of Penetration Testing -- 3 Implementation -- 3.1 Retrieving Package Information.
3.2 Identifying the Attack Surface -- 3.3 Identifying and Launching Activities -- 3.4 Exploiting Content Providers -- 3.5 Interacting with Services -- 3.6 Listing Broadcast Receivers -- 4 Results and Discussion -- 4.1 Questionnaire Results and Discussion -- 4.2 Vulnerability Testing Results -- 5 Conclusions -- References -- Contemporary Global Trends in Small Project Management Practices and Their Impact on Oman -- 1 Introduction -- 2 Literature Survey -- 3 Methodology -- 4 Results and Discussion -- 4.1 Participants -- 5 Conclusion -- References -- Early Prediction of Sepsis Using Machine Learning Algorithms: A Review -- 1 Introduction -- 1.1 Description of Sepsis -- 1.2 Challenges -- 2 Methodology -- 2.1 Pathogenesis -- 2.2 Host Response -- 2.3 Analysis and Selection of Patients -- 2.4 Collection of Data -- 2.5 Data Imputation -- 3 Model Design and Technique -- 3.1 Gradient Boosting -- 3.2 Random Forest Model -- 3.3 Support Vector Machine -- 3.4 XG Boost Algorithm -- 4 Conclusion -- References -- Solve My Problem-Grievance Redressal System -- 1 Introduction -- 2 Literature Review -- 3 Problem Statement -- 4 Existing Systems -- 5 Proposed System -- 6 Implementation -- 7 Conclusion -- References -- Finite Automata Application in Monitoring the Digital Scoreboard of a Cricket Game -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 3.1 Tracking of On-Strike Batsman -- 3.2 Ball Tracking in an Over -- 4 Results/Discussion -- 5 Conclusion -- References -- Diabetes Prediction Using Machine Learning: A Detailed Insight -- 1 Introduction -- 2 Identification of Symptoms for Diabetes Prediction -- 3 Feature Analysis -- 4 Comparative Analysis of Different ML Algorithms in Diabetes Onset Prediction -- 5 Conclusion -- References -- Empirical Analysis of Resource Scheduling Algorithms in Cloud Simulated Environment -- 1 Introduction -- 2 Literature Review.
3 EA of the Results and Their Implications -- 3.1 EA Concerning A.S.T -- 3.2 EA Concerning A.C.T -- 3.3 EA Concerning A.T.A.T -- 3.4 EA Concerning A.C -- 4 Improving Resource Scheduling Using Intelligence Mechanism -- 5 Conclusion -- References -- A Recommendation Model System Using Health Aware- Krill Herd Optimization that Develops Food Habits and Retains Physical Fitness -- 1 Introduction -- 2 Related Works -- 3 Proposed Method -- 3.1 Architecture of RecSys -- 3.2 Krill Herd Algorithm for Optimization -- 3.3 Genetic Operators -- 3.4 Recommendation System (Recsys) Using KHO Algorithm -- 3.5 Evaluation of Fitness Value -- 4 Results and Analysis -- 4.1 Quantitative Analysis -- 4.2 Qualitative Analysis -- 5 Conclusion -- References -- Video Summarization on E-Sport -- 1 Introduction -- 2 Literature Review -- 3 Proposed System -- 3.1 Flow Diagram -- 3.2 Algorithmic Steps -- 4 Implementation -- 5 Results -- 6 Conclusion -- References -- SQL Injection Attack Detection and Prevention Based on Manipulating the SQL Query Input Attributes -- 1 Introduction -- 2 SQL-Injection Attacks -- 3 Work Model of SQL Injection -- 4 Related Work -- 5 Proposed Work -- 5.1 Proposed Algorithm for Replacing Special String Constraints Instead of Input Parameter -- 5.2 Levenshtein Method -- 6 Implementation -- 7 Conclusion and Future Work -- References -- Comparative Analysis of State-of-the-Art Face Recognition Models: FaceNet, ArcFace, and OpenFace Using Image Classification Metrics -- 1 Introduction -- 2 Problem Statement -- 3 Literature Review -- 3.1 Convolutional Neural Networks -- 3.2 FaceNet -- 3.3 ArcFace -- 3.4 OpenFace -- 3.5 RetinaFace -- 4 Design Methodology -- 4.1 Face Extraction by RetinaFace -- 4.2 Vectorization by FaceNet, ArcFace and OpenFace -- 4.3 Results -- 4.4 Loss Functions -- 5 Conclusion -- References.
Hash Edward Curve Signcryption for Secure Big Data Transmission -- 1 Introduction -- 2 Related Works -- 3 Methodology -- 3.1 Theil-Sen Robust Linear Regression -- 3.2 Pseudoephemeral Kupyna HashEdward-Signcryption-Based Secure Data Transmission -- 4 Assessment Settings -- 5 Performance Comparison -- 6 Conclusion -- References -- An Energy Efficient, Spontaneous, Multi-path Data Routing Algorithm with Private Key Creation for Heterogeneous Network -- 1 Introduction -- 1.1 Difficulties in Formation of a Heterogeneous Network -- 2 Literature Survey -- 2.1 Contribution of Proposed Research Mechanism -- 3 Intelligent Swarm Adapted Colony Based Optimization Methodology -- 4 Spontaneous Energy Proficient Multi-path Data Routing (SEPMDR) -- 4.1 Formation of Basic Network Metrics -- 4.2 Algorithm 1 for SEPMDR -- 4.3 Algorithm 2 for Private Key Creation -- 4.4 Operational Phases of SEPMDR -- 5 Performance Evaluation and Its Results -- 5.1 Power Conservation of Nodes -- 5.2 Comparison of Packet Delivery Ratio (PDR) of the Proposed System -- 5.3 Evaluation of Routing Overhead of the Different Methodologies -- 5.4 Comparison of Network Throughput -- 6 Conclusion and Future Scope -- References -- A Hybrid Model for Epileptic Seizure Prediction Using EEG Data -- 1 Introduction -- 1.1 Organization -- 2 Related Work -- 3 Proposed Methodology -- 3.1 Preprocessing of EEG signals -- 3.2 Feature Extraction -- 3.3 Classification -- 4 Performance Analysis -- 4.1 Dataset -- 4.2 Implementation Details -- 4.3 Performance Analysis -- 5 Conclusion -- References -- Adapting to Noise in Forensic Speaker Verification Using GMM-UBM I-Vector Method in High-Noise Backgrounds -- 1 Introduction -- 2 Data Acquisition -- 3 Feature Extraction -- 4 Mel-Frequency Cepstral Coefficients (MFCC) -- 5 Speaker Verification System Using GMM-UBM I Vector Frame Work.
6 Modified Feature Extraction for Noise Adapting.
Record Nr. UNINA-9910831008003321
Cham : , : Springer Nature Switzerland : , : Imprint : Springer, , 2024
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Immersive technology in smart cities : augmented and virtual reality in IoT / / editors, Sagaya Aurelia and Sara Paiva
Immersive technology in smart cities : augmented and virtual reality in IoT / / editors, Sagaya Aurelia and Sara Paiva
Pubbl/distr/stampa Cham, Switzerland : , : Springer : , : EAI, , [2022]
Descrizione fisica 1 online resource (270 pages)
Disciplina 006.8
Collana EAI/Springer innovations in communication and computing
Soggetto topico Augmented reality
ISBN 3-030-66607-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1: Exploring Immersive Technology in Education for Smart Cities -- 1.1 Introduction -- 1.1.1 How Does the Technology Fit and What Are the Benefits? -- 1.2 Augmented Reality in Education -- 1.2.1 Remote Collaborative Classrooms -- 1.2.2 Safer Experiments and Demonstrations -- 1.3 Immersive Technology in Four Cs of Learning -- 1.3.1 Critical Thinking and Problem-Solving -- 1.3.2 Creativity and Innovation -- 1.3.3 Collaboration -- 1.3.4 Effective Communication -- 1.4 Applications of Immersive Technology in Education -- 1.4.1 Engineering Education -- 1.4.2 Medical Education -- 1.4.3 Complex Concepts in Mathematics and Space Technology -- 1.4.4 General Education -- 1.5 Research Method -- 1.5.1 Research Design -- 1.5.2 Sample of Study -- 1.5.3 AstroSolar Application -- 1.5.4 Research Process -- 1.5.5 Data Collection Utilities -- 1.6 Results -- 1.6.1 Expert's Interview -- 1.6.2 SUS Score -- 1.6.3 Usability and Learnability Factor -- 1.6.4 Feedback on Positive and Negative SUS Questionnaire -- 1.7 Conclusion and Future Work -- References -- Chapter 2: Immersive Learning About IC-Engine Using Augmented Reality -- 2.1 Introduction -- 2.2 Literature Review -- 2.3 Problem Statement and Objective -- 2.4 Methodology -- 2.5 Block Diagram -- 2.6 Implementation -- 2.7 Conclusion and Future Work -- References -- Chapter 3: Location-Based Mobile Augmented Reality Systems: A Systematic Review -- 3.1 Introduction -- 3.2 LBMAR Systems: A Walkthrough of Common Applications and Current State -- 3.3 Research Questions -- 3.4 Research Methods -- 3.5 Planning the Review -- 3.5.1 Data Sources -- 3.5.2 Search Terms -- 3.5.3 Inclusion and Exclusion Criteria -- 3.5.4 Categories for Analysis and Data Coding -- 3.6 Conducting the Review and Reporting the Review -- 3.6.1 Future Research -- 3.7 Conclusion -- References.
Chapter 4: Innovative Natural Disaster Precautionary Methods Through Virtual Space -- 4.1 Introduction -- 4.2 Virtual Reality -- 4.2.1 Working of Virtual Reality -- 4.2.2 Key Features of Virtual Reality Technology -- 4.3 Natural Disasters -- 4.3.1 Causes of Natural Disasters -- 4.4 State of the Art -- 4.5 Proposed Model -- 4.5.1 The Type of Natural Disaster -- 4.5.2 Environment -- 4.5.3 Training -- 4.5.4 Precautionary Measures -- 4.5.5 Scenario Simulation -- 4.5.6 Trainee's Interaction -- 4.6 Result and Discussion -- 4.6.1 Simulation Process -- 4.7 Limitation -- 4.8 Future Enhancements -- 4.9 Conclusion -- References -- Chapter 5: Internet of Things: Immersive Healthcare Technologies -- 5.1 Introduction to Internet of Things -- 5.1.1 IoT Ecosystem and Its Components -- 5.2 Architecture of Internet of Things -- 5.3 Internet of Things in Healthcare -- 5.3.1 IoT Services -- 5.3.1.1 Elderly Assistance Through Ambient-Assisted Living Technology -- 5.3.1.2 IoMT (Internet of M Health) -- 5.3.1.3 Assistance Provided for Adverse Drug Reaction Patients -- 5.3.1.4 Health Concerns of the Public -- 5.3.1.5 IoT Healthcare with the Integration of Wearable Devices -- 5.3.1.6 Emergency Healthcare for Natural Disasters -- 5.3.1.7 Configuration of the Embedded Gateways -- 5.3.2 IoT Applications -- 5.3.2.1 Single Condition -- 5.3.2.2 Clustered-Condition Applications -- 5.4 More Details on the Applications in Healthcare -- 5.4.1 IoT Applications in Healthcare -- 5.4.1.1 Sensors and Technology Used for the Diseases -- 5.4.1.2 Apps in Use for Healthcare -- 5.5 Architecture for Healthcare-Based Internet of Things -- 5.5.1 Perception Layer -- 5.5.2 Network Layer -- 5.5.3 Middleware Layer -- 5.5.4 Application Layer -- 5.5.5 Business Layer -- 5.6 Challenges in Deployment of Healthcare System -- 5.6.1 Rules Regarding Standardization of Merchants and Sellers of Medical Devices.
5.6.2 Analyzing the Cost Effectiveness -- 5.6.3 The Process of Developing the Application -- 5.6.4 Low Power Requirements -- 5.6.5 Types of Network: Data Centric, Service, and Patients Centric -- 5.6.6 Issue of Reducing Scalability -- 5.6.7 Arise of New Conditions and Diseases -- 5.6.8 Identification and Managing Resources -- 5.6.9 The Issue of Quality of Service -- 5.6.10 Managing and Protecting the Data -- 5.6.11 Mobility and Heterogeneous Nature -- 5.7 Security in IoT Healthcare -- 5.7.1 Analyzing the Security Requirements in IoT -- 5.7.2 Security Issues in IoT Healthcare -- 5.7.3 Secured IoT Healthcare -- 5.8 Conclusion -- References -- Chapter 6: Implementation of an Intelligent Model Based on Big Data and Decision-Making Using Fuzzy Logic Type-2 for the Car Assembly Industry in an Industrial Estate in Northern Mexico -- 6.1 Introduction -- 6.1.1 Proposal Methodology -- 6.1.2 Main Stakeholders or Interest Groups -- 6.2 Business Simulators as Knowledge Manager -- 6.2.1 Industry 4.0 -- 6.2.2 Big Data -- 6.2.3 Fuzzy Logic Type-2 -- 6.3 Simulation Execution Methodology -- 6.3.1 Measure Knowledge Management -- 6.3.2 The Intellect Model -- 6.4 Results -- 6.5 Conclusions and Future Research -- 6.5.1 Future Research -- References -- Chapter 7: Cloud Computing Model on Wireless Ad Hoc Network Using Clustering Mechanism for Smart City Applications -- 7.1 Introduction -- 7.1.1 Cloud Computing -- 7.1.2 Clustering Mechanism -- 7.1.3 Clustering Mechanism in Cloud Computing -- 7.1.4 Ad Hoc Networks -- 7.2 Related Works -- 7.2.1 Cloud Computing -- 7.2.2 Ad Hoc Networks -- 7.2.3 Clustering Mechanism in Cloud Computing -- 7.3 Clustering in Cloud Computing -- 7.3.1 Pseudocode: Cluster Creation -- 7.3.2 Pseudocode: Clusterhead Election -- 7.3.3 Experimental Results -- 7.4 Cloud Computing Model on Clustered Wireless Ad Hoc Networks.
7.5 Clustered Wireless Ad Hoc Cloud Network for Smart City Applications -- 7.5.1 Storage and Resource Sharing -- 7.5.2 Data Analytics -- 7.5.3 Virtual Machine Clustering -- 7.5.4 Fog Computing or Edge Computing -- 7.5.5 Green Computing -- 7.6 Conclusion -- References -- Chapter 8: Smart Cities New Paradigm Applications and Challenges -- 8.1 Introduction -- 8.2 The Service Delivery Progression from Push Model into the Ecosystems Model -- 8.3 Pillars of the Fourth Industrial Revolution -- 8.4 The Current State of Smart Services -- 8.5 Smart Cities Services Vs. Smart Connected Giant Technology and Services "SCGTS" -- 8.6 Proposed Smart Cities Collaborative Ecosystems -- 8.6.1 Infrastructure Layer -- 8.6.2 Application Layer -- 8.6.2.1 Application to Application Exchange -- 8.6.2.2 Application to Data Zone Exchange -- 8.6.2.3 Application to Grade Service Exchange -- 8.6.2.4 Application to Infrastructure Exchange -- 8.6.3 Services Layer -- 8.6.4 Cloud of Digital Data -- 8.6.5 End Users -- 8.7 Smart Applications -- 8.7.1 Smart Urban Energy Systems -- 8.7.1.1 Energy Infrastructure -- 8.7.1.2 Energy Applications -- 8.7.1.3 Energy Cloud Zone -- 8.7.1.4 End Users -- 8.7.1.5 Energy Services -- 8.7.1.6 Energy Standardization and Protocols -- 8.7.2 Smart Urban Transportation Systems -- 8.7.2.1 Transportations Infrastructure -- 8.7.2.2 Transportation Applications -- 8.7.2.3 Transportation Cloud Zone -- 8.7.2.4 End Users -- 8.7.2.5 Transportation Services -- 8.7.2.6 Transportation Standardized and Protocols -- 8.8 Transition Plan Properties and Challenges -- 8.9 Conclusion -- 8.10 Exercises -- 8.10.1 Short Answers Questions -- 8.10.2 True/False Questions -- References -- Chapter 9: A Survey on IoT Applications in Smart Cities -- 9.1 Introduction -- 9.2 Related Work -- 9.3 Applications of IoT in Smart Cities -- 9.3.1 Smart Security -- 9.3.2 Smart Services.
9.3.3 Smart Infrastructure -- 9.3.4 Smart Home and Buildings -- 9.3.5 Smart Environment -- 9.3.6 Waste Management -- 9.3.7 Smart Grid -- 9.3.8 E-Governance -- 9.3.9 Smart Agriculture and Animal Farming -- 9.4 Conclusion -- References -- Chapter 10: IoT-Based Water Quality and Quantity Monitoring System for Domestic Usage -- 10.1 Introduction -- 10.1.1 Overview of the Existing Systems -- 10.2 Proposed System -- 10.2.1 Ultrasonic Sensor -- 10.2.2 Turbidity Sensor -- 10.2.3 pH Sensor -- 10.2.4 NTC Thermistor -- 10.2.5 Flow Measurement -- 10.2.6 Arduino UNO -- 10.2.7 RF Module -- 10.2.8 LED -- 10.2.9 LCD -- 10.3 Results and Discussion -- 10.3.1 Steps for Connection -- 10.4 Conclusion and Future Scope -- References -- Chapter 11: Threat Modeling and IoT Attack Surfaces -- 11.1 Introduction -- 11.2 IoT Layered Architecture -- 11.3 IoT Technologies and Protocols -- 11.4 IoT Operating Systems -- 11.5 IT Communication Model -- 11.5.1 Device-to-Device Model -- 11.5.2 Device-to-Cloud Model -- 11.5.3 Device to Gateway Model -- 11.5.4 Back-End Data Sharing Model -- 11.6 IoT Issues and Challenges -- 11.6.1 IoT Security Problems -- 11.7 IoT Vulnerabilities and Attack Surfaces -- 11.8 Tools and Techniques -- 11.8.1 Defend IoT Security Issues -- 11.9 Conclusion -- References -- Index.
Record Nr. UNINA-9910522951203321
Cham, Switzerland : , : Springer : , : EAI, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Sustainable advanced computing : select proceedings of ICSAC 2021 / / edited by Sagaya Aurelia [and three others]
Sustainable advanced computing : select proceedings of ICSAC 2021 / / edited by Sagaya Aurelia [and three others]
Pubbl/distr/stampa Singapore : , : Springer, , [2022]
Descrizione fisica 1 online resource (669 pages)
Disciplina 060
Collana Lecture Notes in Electrical Engineering
Soggetto topico Artificial intelligence
ISBN 981-16-9011-1
981-16-9012-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Committees -- Preface -- Acknowledgements -- Keynote Speakers -- ICSAC 2021 Reviewers -- Contents -- About the Editors -- Machine Learning -- Predictive Analytics for Real-Time Agriculture Supply Chain Management: A Novel Pilot Study -- 1 Introduction -- 1.1 Background -- 1.2 Motivation -- 2 Related Works -- 3 Research Gap -- 4 Proposed Work -- 5 Technology Stack -- 6 Experimental Work -- 7 Future Scope -- 8 Conclusion -- References -- Analysis and Prediction of Crop Infestation Using Machine Learning -- 1 Introduction -- 2 Objective -- 3 Literature Review -- 4 Materials and Methods -- 4.1 Data Summary -- 4.2 Data Imputation-Soul Nutrients Deficiency -- 4.3 Dependent Variable Standardization -- 4.4 Outlier Treatment -- 4.5 Correlation of Numerical Variables -- 4.6 Regression Models and Outcome -- 5 Classification Algorithms for Pest Prediction -- 5.1 Classification Modelling Techniques and Outcomes -- 6 Conclusion -- References -- ECG-Based Personal Identification System -- 1 Introduction -- 2 Literature Survey -- 3 Proposed Model -- 4 Results and Discussion -- 5 Conclusion -- References -- Explorations in Graph-Based Ranking Algorithms for Automatic Text Summarization on Konkani Texts -- 1 Introduction -- 2 Related Work -- 3 Graph-Based Ranking Algorithms -- 3.1 Hits -- 3.2 PageRank -- 4 Representing Textual Data as a Graph -- 4.1 Directed Graph -- 4.2 Undirected Graph -- 5 Similarity Measure -- 6 Dataset -- 7 Sentence Extraction Methodology -- 8 Evaluation and Results -- 9 Conclusion -- References -- Demography-Based Hybrid Recommender System for Movie Recommendations -- 1 Introduction -- 2 Background Theory -- 3 Proposed Model -- 3.1 Dataset -- 3.2 Data Preparation -- 3.3 System Design -- 4 Proposed Hybrid Algorithms -- 4.1 Collaborative Filtering-Based Models -- 4.2 Demography-Based Filtering -- 4.3 Content-Based Filtering.
5 Experimental Evaluation -- 6 Conclusion and Future Scope -- References -- Holistic Recommendation System Framework for Health Care Programs -- 1 Introduction -- 2 Background and Motivation -- 3 The Proposed Framework -- 3.1 The Community Support Program -- 3.2 IT Infrastructure -- 3.3 Health Care Recommendation System -- 3.4 Mobile App for Health Care Program -- 4 Challenges -- 5 Conclusions -- References -- A Synthetic Data Generation Approach Using Correlation Coefficient and Neural Networks -- 1 Introduction -- 1.1 Need for More Data -- 1.2 Data Generation -- 2 Theory and Background -- 2.1 Correlation Coefficient and Heatmap -- 2.2 Artificial Neural Network -- 3 Algorithm -- 3.1 Preparing Dataset -- 3.2 Heatmap Implementation -- 3.3 Neural Network Architecture -- 4 Results and Comparison with Previous Works -- 4.1 Generating Values of Other Attributes -- 4.2 Testing -- 4.3 Comparison of Previous Works -- 5 Conclusions -- 6 Future Work -- References -- Cepstral Coefficient-Based Gender Classification Using Audio Signals -- 1 Introduction -- 2 Proposed Work -- 2.1 Wavelet Signal Denoiser -- 2.2 Mel-Frequency Cepstral Coefficients-Features -- 2.3 Statistical Parameters -- 2.4 SVM Classifier -- 2.5 Observations from Wavelet Denoiser -- 3 Results -- 3.1 Comparison with Existing Work -- 4 Conclusion and Future Work -- References -- Reinforcement Learning Applications for Performance Improvement in Cloud Computing-A Systematic Review -- 1 Introduction -- 2 Literature Survey -- 3 Conclusion -- References -- Machine Learning Based Consumer Credit Risk Prediction -- 1 Introduction -- 2 Related Work -- 3 Proposed Work -- 4 Experimental Setup and Results -- 5 Conclusion and Future Work -- References -- Hate Speech Detection Using Machine Learning Techniques -- 1 Introduction -- 2 Methodology -- 3 Datasets -- 4 Feature Representation -- 5 Proposed Models.
5.1 Supervised Machine Learning Techniques Used Together with One Unsupervised Machine Learning Technique -- 5.2 Unsupervised Machine Learning Techniques -- 5.3 Deep Learning Techniques -- 6 Results and Analysis -- 7 Conclusion -- References -- Real-Time Traffic Sign Detection Under Foggy Condition -- 1 Introduction -- 2 Related Studies -- 3 Research Dataset -- 4 Implementation -- 5 Training -- 6 Confusion Matrix -- 7 Results -- 8 Conclusion -- References -- Deep Learning -- Waste Object Segmentation for Autonomous Waste Segregation -- 1 Introduction -- 2 Related Work -- 3 Proposed Technique -- 3.1 Global Convolutional Network -- 3.2 Addition of Input Layers from HSV Color Space -- 3.3 Channel Attention -- 3.4 Dataset and Experimentation -- 4 Results and Discussion -- 4.1 Metrics -- 4.2 Experimental Results and Discussion -- 4.3 Experiments with Increasing Kernel -- 5 Conclusions and Future Scope -- References -- Deep Learning Techniques to Improve Radio Resource Management in Vehicular Communication Network -- 1 Introduction -- 2 Literature Review -- 3 Methods of RRM -- 4 Working of RRM -- 5 Overview of Deep Learning -- 6 Activation Functions -- 7 Need of Bias -- 8 Convolutional Neural Network -- 9 Machine Learning Algorithms Used for RRM -- 10 Comparison Between Different Models -- 11 Conclusion -- References -- Malabar Nightshade Disease Detection Using Deep Learning Technique -- 1 Introduction -- 2 Related Work -- 3 System Architecture -- 4 Methodology -- 4.1 Convolutional Neural Network -- 4.2 Convolutional Layer -- 4.3 MaxPooling Layer -- 4.4 Flatten -- 4.5 Dense Layer -- 5 Implementation -- 6 Feature Extraction -- 7 Classification -- 8 Dataset Description -- 9 Result Analysis -- 10 Future Scope -- 11 Conclusion -- References.
A Constructive Deep Learning Applied Agent Mining for Supported Categorization Model to Forecast the Hypokinetic Rigid Syndrome (HRS) Illness -- 1 Introduction -- 2 Related Works -- 3 Strategy -- 3.1 Data Set -- 3.2 CNN Model -- 4 Experimental Results -- 4.1 Data Sources -- 4.2 Performance Method -- 5 Numerical Results -- 6 Comparison and Future Directions -- 7 Conclusion -- References -- High-Utility Pattern Mining Using ULB-Miner -- 1 Introduction -- 2 Literature Review -- 3 Methodology -- 4 Experiments and Analysis -- 4.1 The Execution time -- 4.2 The Memory Consumption -- 5 Conclusion -- References -- Recent Progress in Object Detection in Satellite Imagery: A Review -- 1 Introduction -- 2 Object Detection Methods -- 2.1 Techniques Based on HDNN and FCN -- 2.2 Techniques Based on Faster RCNN -- 2.3 Techniques Based on Edge Guided Method -- 2.4 Techniques Based on U-Net -- 2.5 Techniques Based on SSD -- 2.6 Techniques Based on YOLT -- 2.7 Techniques Based on Supervised Classification -- 3 Conclusion -- References -- Aspergillus Niger Fungus Detection Using Deep Convolutional Neural Network with Principal Component Analysis and Chebyshev Neural Network -- 1 Introduction -- 2 Proposed Method -- 2.1 Image Acquisition -- 2.2 Principal Component Analysis -- 2.3 Chebyshev Neural Network -- 2.4 Deep CNN Features -- 2.5 Proposed Algorithm -- 3 Results and Conclusion -- 3.1 Confusion Matrix -- 3.2 Receiver Operating Characteristic Curve -- 4 Conclusion -- References -- Autism Spectrum Disorder Classification Based on Reliable Particle Swarm Optimization Denoiser -- 1 Introduction -- 2 Literature Review -- 3 Reliable Particle Swarm Optimization Based Flexible Kalman Filtering (RPSO-FKF) -- 4 Results and Discussion -- 4.1 About Performance Metrics -- 4.2 About ABIDE Dataset -- 4.3 Performance Evaluation -- 5 Conclusion -- References.
Automated News Summarization Using Transformers -- 1 Introduction -- 1.1 Need for Text Summarization -- 1.2 Summarization Techniques -- 2 Related Work -- 3 Methodology -- 3.1 Dataset -- 3.2 Preprocessing -- 3.3 Model Explanation -- 4 Results -- 4.1 Qualitative Analysis -- 4.2 Quantitative Analysis -- 5 Conclusion -- References -- Generating Stylistically Similar Vernacular Language Fonts Using English Fonts -- 1 Introduction -- 2 Related Works -- 2.1 Tower Architecture -- 2.2 Transfer Learning-Hiragana Fonts -- 2.3 Extrapolating from Kanji Character Subset -- 2.4 GlyphGAN -- 3 Formulation -- 4 Dataset -- 5 Implementation -- 5.1 Network Architecture -- 5.2 Training Details -- 5.3 Evaluation Metrics -- 6 Results -- 6.1 Evaluation -- 6.2 Two-Step ED Model -- 6.3 Encoder-Multidecoder Model -- 7 Conclusion and Future Work -- References -- Optimization of Artificial Neural Network Parameters in Selection of Players for Soccer Match -- 1 Introduction -- 2 Review of Literature -- 3 Artificial Intelligence in Sports -- 4 Data Set -- 5 Results and Discussion -- References -- Organ Risk Prediction Using Deep Learning and Neural Networks -- 1 Introduction -- 2 Related Research Work and Model Used -- 3 Materials and Methods Used -- 3.1 Dataset -- 3.2 Deep Neural Network (DNN) -- 4 Experimental Result Analysis and Discussion -- 4.1 Implementation -- 5 Conclusions and Future Work -- References -- Image Processing (Image/Video) and Computer Vision -- Automated Vehicle License Plate Recognition System: An Adaptive Approach Using Digital Image Processing -- 1 Introduction -- 2 Related Works -- 3 Proposed System -- 4 Implementation Process -- 4.1 Preprocessing -- 4.2 ROI Detection -- 4.3 Removing Noise -- 4.4 Contour Selection -- 4.5 Character Segmentation -- 4.6 Pytesseract OCR Process Flow -- 4.7 Optical Character Recognition (OCR) -- 5 Performance Analysis.
6 Conclusion.
Record Nr. UNINA-9910743360803321
Singapore : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui