top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Computational methods in lanthanide and actinide chemistry / / edited by Michael Dolg ; contributors, Raymond Atta-Fynn [and forty others]
Computational methods in lanthanide and actinide chemistry / / edited by Michael Dolg ; contributors, Raymond Atta-Fynn [and forty others]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (495 p.)
Disciplina 546.41
Soggetto topico Rare earth metals
Actinide elements
Chemistry, Inorganic
Soggetto genere / forma Electronic books.
ISBN 1-118-68828-7
1-118-68830-9
1-118-68829-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Contributors; Preface; Chapter 1 Relativistic Configuration Interaction Calculations for Lanthanide and Actinide Anions; 1.1 Introduction; 1.2 Bound Rare Earth Anion States; 1.3 Lanthanide and Actinide Anion Survey; 1.3.1 Prior Results and Motivation for the Survey; 1.3.2 Techniques for Basis Set Construction and Analysis; 1.3.3 Discussion of Results; 1.4 Resonance and Photodetachment Cross Section of Anions; 1.4.1 The Configuration Interaction in the Continuum Formalism; 1.4.2 Calculation of the Final State Wavefunctions; Acknowledgments; References
Chapter 2 Study of Actinides by Relativistic Coupled Cluster Methods2.1 Introduction; 2.2 Methodology; 2.2.1 The Relativistic Hamiltonian; 2.2.2 Fock-Space Coupled Cluster Approach; 2.2.3 The Intermediate Hamiltonian CC method; 2.3 Applications to Actinides; 2.3.1 Actinium and Its Homologues: Interplay of Relativity and Correlation; 2.3.2 Thorium and Eka-thorium: Different Level Structure; 2.3.3 Rn-like actinide ions; 2.3.4 Electronic Spectrum of Superheavy Elements Nobelium (Z=102) and Lawrencium (Z=103); 2.3.5 The Levels of U4+ and U5+: Dynamic Correlation and Breit Interaction
2.3.6 Relativistic Coupled Cluster Approach to Actinide Molecules2.4 Summary and Conclusion; References; Chapter 3 Relativistic All-Electron Approaches to the Study of f Element Chemistry; 3.1 Introduction; 3.2 Relativistic Hamiltonians; 3.2.1 General Aspects; 3.2.2 Four-Component Hamiltonians; 3.2.3 Two-Component Hamiltonians; 3.2.4 Numerical Example; 3.3 Choice of Basis Sets; 3.4 Electronic Structure Methods; 3.4.1 Coupled Cluster Approaches; 3.4.2 Multi-Reference Perturbation Theory; 3.4.3 (Time-Dependent) Density Functional Theory; 3.5 Conclusions and Outlook; Acknowledgments; References
Chapter 4 Low-Lying Excited States of Lanthanide Diatomics Studied by Four-Component Relativistic Configuration Interaction Methods4.1 Introduction; 4.2 Method of Calculation; 4.2.1 Quaternion Symmetry; 4.2.2 Basis Set and HFR/DC Method; 4.2.3 GOSCI and RASCI Methods; 4.3 Ground State; 4.3.1 CeO Ground State; 4.3.2 CeF Ground State; 4.3.3 Discussion of Bonding in CeO and CeF; 4.3.4 GdF Ground State; 4.3.5 Summary of the Chemical Bonds, of CeO, CeF, GdF; 4.4 Excited States; 4.4.1 CeO Excited States; 4.4.2 CeF Excited States; 4.4.3 GdF Excited States; 4.5 Conclusion; References
Chapter 5 The Complete-Active-Space Self-Consistent-Field Approach and Its Application to Molecular Complexes of the f-Elements5.1 Introduction; 5.1.1 Treatment of Relativistic Effects; 5.1.2 Basis Sets; 5.2 Identifying and Incorporating Electron Correlation; 5.2.1 The Hartree Product Wavefunction; 5.2.2 Slater Determinants and Fermi Correlation; 5.2.3 Coulomb Correlation; 5.3 Configuration Interaction and the Multiconfigurational Wavefunction; 5.3.1 The Configuration Interaction Approach; 5.3.2 CI and the Dissociation of H2; 5.3.3 Static Correlation and Crystal Field Splitting
5.3.4 Size Inconsistency and Coupled Cluster Theory
Record Nr. UNINA-9910132450103321
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Computational methods in lanthanide and actinide chemistry / / edited by Michael Dolg ; contributors, Raymond Atta-Fynn [and forty others]
Computational methods in lanthanide and actinide chemistry / / edited by Michael Dolg ; contributors, Raymond Atta-Fynn [and forty others]
Pubbl/distr/stampa Chichester, England : , : Wiley, , 2015
Descrizione fisica 1 online resource (495 p.)
Disciplina 546.41
Soggetto topico Rare earth metals
Actinide elements
Chemistry, Inorganic
ISBN 1-118-68828-7
1-118-68830-9
1-118-68829-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title Page; Copyright Page; Contents; Contributors; Preface; Chapter 1 Relativistic Configuration Interaction Calculations for Lanthanide and Actinide Anions; 1.1 Introduction; 1.2 Bound Rare Earth Anion States; 1.3 Lanthanide and Actinide Anion Survey; 1.3.1 Prior Results and Motivation for the Survey; 1.3.2 Techniques for Basis Set Construction and Analysis; 1.3.3 Discussion of Results; 1.4 Resonance and Photodetachment Cross Section of Anions; 1.4.1 The Configuration Interaction in the Continuum Formalism; 1.4.2 Calculation of the Final State Wavefunctions; Acknowledgments; References
Chapter 2 Study of Actinides by Relativistic Coupled Cluster Methods2.1 Introduction; 2.2 Methodology; 2.2.1 The Relativistic Hamiltonian; 2.2.2 Fock-Space Coupled Cluster Approach; 2.2.3 The Intermediate Hamiltonian CC method; 2.3 Applications to Actinides; 2.3.1 Actinium and Its Homologues: Interplay of Relativity and Correlation; 2.3.2 Thorium and Eka-thorium: Different Level Structure; 2.3.3 Rn-like actinide ions; 2.3.4 Electronic Spectrum of Superheavy Elements Nobelium (Z=102) and Lawrencium (Z=103); 2.3.5 The Levels of U4+ and U5+: Dynamic Correlation and Breit Interaction
2.3.6 Relativistic Coupled Cluster Approach to Actinide Molecules2.4 Summary and Conclusion; References; Chapter 3 Relativistic All-Electron Approaches to the Study of f Element Chemistry; 3.1 Introduction; 3.2 Relativistic Hamiltonians; 3.2.1 General Aspects; 3.2.2 Four-Component Hamiltonians; 3.2.3 Two-Component Hamiltonians; 3.2.4 Numerical Example; 3.3 Choice of Basis Sets; 3.4 Electronic Structure Methods; 3.4.1 Coupled Cluster Approaches; 3.4.2 Multi-Reference Perturbation Theory; 3.4.3 (Time-Dependent) Density Functional Theory; 3.5 Conclusions and Outlook; Acknowledgments; References
Chapter 4 Low-Lying Excited States of Lanthanide Diatomics Studied by Four-Component Relativistic Configuration Interaction Methods4.1 Introduction; 4.2 Method of Calculation; 4.2.1 Quaternion Symmetry; 4.2.2 Basis Set and HFR/DC Method; 4.2.3 GOSCI and RASCI Methods; 4.3 Ground State; 4.3.1 CeO Ground State; 4.3.2 CeF Ground State; 4.3.3 Discussion of Bonding in CeO and CeF; 4.3.4 GdF Ground State; 4.3.5 Summary of the Chemical Bonds, of CeO, CeF, GdF; 4.4 Excited States; 4.4.1 CeO Excited States; 4.4.2 CeF Excited States; 4.4.3 GdF Excited States; 4.5 Conclusion; References
Chapter 5 The Complete-Active-Space Self-Consistent-Field Approach and Its Application to Molecular Complexes of the f-Elements5.1 Introduction; 5.1.1 Treatment of Relativistic Effects; 5.1.2 Basis Sets; 5.2 Identifying and Incorporating Electron Correlation; 5.2.1 The Hartree Product Wavefunction; 5.2.2 Slater Determinants and Fermi Correlation; 5.2.3 Coulomb Correlation; 5.3 Configuration Interaction and the Multiconfigurational Wavefunction; 5.3.1 The Configuration Interaction Approach; 5.3.2 CI and the Dissociation of H2; 5.3.3 Static Correlation and Crystal Field Splitting
5.3.4 Size Inconsistency and Coupled Cluster Theory
Record Nr. UNINA-9910678279103321
Chichester, England : , : Wiley, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui