Advancements in Biosurfactants Research / / edited by Ruby Aslam, Mohammad Mobin, Jeenat Aslam, Saman Zehra
| Advancements in Biosurfactants Research / / edited by Ruby Aslam, Mohammad Mobin, Jeenat Aslam, Saman Zehra |
| Edizione | [1st ed. 2023.] |
| Pubbl/distr/stampa | Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 |
| Descrizione fisica | 1 online resource (568 pages) |
| Disciplina | 668.1 |
| Soggetto topico |
Biochemistry
Physical biochemistry Biophysical Chemistry Chemical Biology |
| ISBN | 3-031-21682-2 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Part 1: Overview and Economic Aspect of Biosurfactants Production -- Chapter 1: Biosurfactants-Types, Sources, and Production -- Chapter 2: Innovative and sustainable production processes for biosurfactants -- Chapter 3: Sustainable production of biosurfactants using waste substrates -- Chapter 4: Characterization and purification of Biosurfactants -- Chapter 5: Biodegradation and Cytotoxic effect of the Biosurfactants -- Chapter 6: Comparison of biodegradability, and toxicity effect of biosurfactants with synthetic surfactants -- Chapter 7: Surface activity and emulsification properties of saponins as biosurfactants -- Part 2: Biosurfactants: Current Industrial Applications -- Chapter 8: Biosurfactants as emulsifying agents in food formulations -- Chapter 9: Applications of Biosurfactants as Anti-Corrosive Agents -- Chapter 10: Role of biosurfactants in nanoparticles synthesis and their stabilization -- Chapter 11: New trends in the textile industry: utilization and aplication of biosurfactants -- Chapter 12: Biosurfactants as an ecofriendly technology in heavy metal remediation -- Chapter 13: Biosurfactants and their perspectives for application in drug adsorption -- Chapter 14: Role of biosurfactants in promoting biodegradation in waste treatment -- Chapter 15: Role of Biosurfactants in Agriculture Management -- Chapter 16: Biosurfactants and their benefits for seeds -- Chapter 17: Role of biosurfactants in marine sediment remediation of organic pollutants -- Chapter 18: Role of Biosurfactants in biofuel production -- Part 3: Biosurfactants: Current Biomedical Applications -- Chapter 19: Role of biosurfactants in Biocidal activity and wound healing -- Chapter 20: Role of Biosurfactants as antitumor agents -- Chapter 21: Biosurfactants in oral cavity care -- Chapter 22: Role of biosurfactant in Biofilm prevention and disruption -- Part 4: Biosurfactants: Commercialization, challenges and future outlook -- Chapter 23: Advantages and Disadvantages over other synthetic surfactants -- Chapter 24: Commercialization of Biosurfactants -- Chapter 25: Challenges and Future Outlooks. |
| Record Nr. | UNINA-9910647392303321 |
| Cham : , : Springer International Publishing : , : Imprint : Springer, , 2023 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Chemically modified carbon nanotubes for commercial applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, and Ruby Aslam
| Chemically modified carbon nanotubes for commercial applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, and Ruby Aslam |
| Pubbl/distr/stampa | Wiesbaden, Germany : , : Wiley-VCH, , [2023] |
| Descrizione fisica | 1 online resource (539 pages) |
| Disciplina | 620.115 |
| Soggetto topico | Carbon nanotubes |
| ISBN |
3-527-83879-1
3-527-83881-3 3-527-83880-5 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Chemically Modified Carbon Nanotubes: Overview, Commercialization, and Economic Aspects -- Chapter 1 A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization -- 1.1 Introduction -- 1.2 Evolution of Carbon: Graphite to CNTs -- 1.2.1 Graphite -- 1.2.2 Diamond -- 1.2.3 Graphene -- 1.2.3.1 Direct Lattice -- 1.2.3.2 The Reciprocal Lattice -- 1.2.4 Carbon Nanotubes -- 1.2.4.1 SWNTs: Types and Structure -- 1.2.4.2 Chirality -- 1.2.4.3 Electronic Properties of CNTs -- 1.2.4.4 Optical Properties of CNTs -- 1.2.4.5 Chemical Properties of CNTs -- 1.2.4.6 Defects in CNTs -- 1.2.4.7 CNTs Properties Modification by Chemical Functionalization Process -- 1.2.4.8 Applications of CNTs -- 1.2.4.9 Synthesis of CNTs -- 1.2.4.10 Analysis of CNTs by Raman Spectroscopy -- 1.3 Conclusion -- Declaration of Competing Interest -- Companies Dealing with Chemically Modified CNTs -- Acknowledgments -- References -- Chapter 2 Surface Modification Strategies for the Carbon Nanotubes -- 2.1 Introduction -- 2.2 Classification of Carbon Nanotubes and Their Fabrication -- 2.2.1 Arc‐Discharge Method -- 2.2.2 Laser Vapor Deposition -- 2.2.3 Chemical Vapor Deposition (CVD) -- 2.3 Purification of CNTs -- 2.4 Surface Modification of CNTs -- 2.4.1 Methods of Functionalization -- 2.4.2 Noncovalent Functionalization -- 2.4.3 Covalent (Chemical) Functionalization -- 2.4.3.1 Defect‐Group Functionalization -- 2.4.3.2 Sidewall Functionalization -- 2.4.3.3 CNTs Functionalized with Polymer -- 2.4.3.4 CNTs Functionalized with Biomolecules -- 2.4.3.5 CNTs Functionalization with Ionic Liquid (ILs) -- 2.4.3.6 Plasma Activated CNTs -- 2.5 Characterization of CNTs -- 2.6 Conclusion -- References.
Chapter 3 Latest Developments in Commercial Scale Fabrications for Chemically Modified Carbon Nanotubes -- Abbreviations -- 3.1 Introduction -- 3.2 Industrial Scale Fabrication Strategies -- 3.2.1 Basic Chemical Vapor Deposition (CVD) Process -- 3.2.1.1 Industrial Level Fabrication of CNT Through Various CVD Methods -- 3.2.1.2 High‐Pressure Chemical Vapor Deposition -- 3.2.1.3 Atmospheric‐Pressure Chemical Vapor Deposition (APCVD) -- 3.2.1.4 Low‐Pressure Chemical Vapor Deposition (LPCVD) -- 3.3 CVD on the Basis of Reactor Wall Temperature -- 3.3.1 Hot‐Wall Chemical Vapor Deposition (Hot‐Wall CVD) -- 3.3.2 Cold‐Wall Chemical Vapor Deposition (Cold‐Wall CVD) -- 3.4 Arc‐Discharge -- 3.5 Laser Vaporization -- 3.6 Other Synthesis Methods -- 3.7 Applications -- 3.7.1 Transistors -- 3.7.2 Conductor -- 3.7.3 Composites -- 3.7.4 Aerogels -- 3.8 Future Scope -- 3.9 Conclusion -- Conflict of Interest -- Other Sources -- Acknowledgments -- References -- Chapter 4 Economical Uses of Chemically Modified Carbon Nanotubes -- 4.1 Introduction -- 4.2 Properties of Carbon Nanotubes -- 4.3 Synthesis of Carbon Nanotubes -- 4.4 Functionalization of Carbon Nanotubes -- 4.5 Characterization/Analysis of Functionalized Carbon Nanotubes -- 4.6 Economy of Carbon Nanotubes -- 4.7 Economic Importance of Carbon Nanotubes -- 4.8 Hydrogen Fuel Cells -- 4.9 Water Splitting -- 4.10 Dye‐Sensitized Solar Cells -- 4.11 Quantum Dot Solar Cells -- 4.12 Silicon‐Based Solar Cells -- 4.13 Thermoelectric Fabrics -- 4.14 Cost of Carbon Nanotubes -- 4.15 Globalization of Carbon Nanotubes -- 4.16 Conclusion -- References -- Part II Chemically Modified Carbon Nanotubes: Energy and Environment Applications -- Chapter 5 Chemically Modified Carbon Nanotubes in Energy Production and Storage -- Abbreviations -- 5.1 Introduction -- 5.2 Production of Carbon Nanotubes. 5.3 History of Energy Storage Devices and Materials -- 5.4 Carbon Nanotubes for Energy Storage -- 5.4.1 Carbon Nanotube Hybrid for Lithium‐Metal Batteries -- 5.4.2 Wearable Energy Storage with Fiberic Carbon Nanotube -- 5.4.3 Carbon Nanotube Hybrid for Supercapacitor Energy Storage -- 5.4.4 Carbon Nanotubes/Biochar for Energy Storage -- 5.5 Present and Future of Carbon Nanotubes -- 5.6 Commercial‐Scale Application of Chemically Modified CNTs for Energy Storage -- 5.7 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Energy Storage -- References -- Chapter 6 Chemically Modified Carbon Nanotubes for Pollutants Adsorption -- 6.1 Introduction -- 6.2 Chemically Modified CNTs -- 6.3 Chemically Modified CNTs for Adsorptive Removal of Pollutants -- 6.3.1 Organic Dyes -- 6.3.2 Removal of Pharmaceuticals -- 6.3.3 Other Organic Pollutants -- 6.3.4 Metal Ions -- 6.4 Influencing Factors -- 6.5 Adsorption Mechanisms of Chemically Modified CNTs -- 6.6 Modified CNT‐Based Materials Toward Commercialization -- 6.7 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 7 Chemically Modified Carbon Nanotubes in Removal of Textiles Effluents -- 7.1 Introduction -- 7.2 History of Removal of Textiles Effluents -- 7.3 Chemically Modified Carbon Nanotubes -- 7.3.1 Chemical Properties -- 7.3.2 Modification Through Chemical Reduction of Diazonium Salts -- 7.4 Dyes Removal Techniques -- 7.5 Adsorption -- 7.6 Carbon‐Based Nanoadsorbents -- 7.7 Carbon Nanotubes -- 7.8 Carbon Nanotubes as an Adsorption of Dye Molecules -- 7.9 Industrial Application of Synthetic Dyes -- 7.10 Conclusion -- Acknowledgment -- References -- Chapter 8 Chemically Modified Carbon Nanotubes in Membrane Separation -- 8.1 Introduction -- 8.2 Carbon Nanotubes (CNTs) Overview -- 8.3 Method of Synthesis of Carbon Nanotube (CNT) -- 8.3.1 Arc Discharge. 8.3.2 Laser Ablation -- 8.3.3 Chemical Vapor Deposition (CVD) -- 8.3.4 Hydrothermal -- 8.3.5 Electrolysis -- 8.4 Fabrication Methods of CNTs -- 8.4.1 Fabrication of CNT‐Reinforced Metal Matrix Composites (CNT‐MMCs) -- 8.4.2 Microwave‐Assisted Fabrication of CNTs -- 8.5 Functionalization of CNTs -- 8.6 Chemically Modified Derivatization of CNTs -- 8.6.1 Electrochemically Assisted Covalent Modification -- 8.7 Polymer Grafting -- 8.8 Carbon Nanotubes Enhanced with Nanoparticles -- 8.9 Advantages of CNTs -- 8.10 Challenges in CNTs -- 8.11 Applications of CNTs as Membrane Separation -- 8.11.1 Water Treatment -- 8.11.2 Air Filtration -- 8.11.3 Energy Storage: Capacitors and Batteries -- 8.11.4 Electrochemical Separation and Catalysis -- 8.11.5 Electronic Devices Fabrication -- 8.11.6 Environment -- 8.11.7 Biology and Agriculture -- 8.12 Commercial‐Scale of Chemically Modified CNTs in Membrane Separation -- 8.13 Future Insights -- 8.14 Conclusion -- References -- Chapter 9 Chemically Modified Carbon Nanotubes for Water Purification System -- Abbreviations -- 9.1 Introduction -- 9.2 History of Water Purification Methods -- 9.3 Carbon Nanotubes CNTs Types -- 9.4 Vital of Modification of CNTs -- 9.5 Surface Modified CNTs for Water Purification -- 9.6 Polymer/CNTs Grafting for Water Purification -- 9.7 Bulk Modified CNTs for Water Purification -- 9.8 Important of Carbon Nanotubes for Water Purification -- 9.9 Conclusions and Future Research Directions -- 9.10 Commercial Application of Chemically Modified CNTs in Water Purification -- 9.11 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Water Purification System -- References -- Part III Chemically Modified Carbon Nanotubes: Electronic and Electrical Applications -- Chapter 10 Chemically Modified Carbon Nanotubes for Electronics and Photonic Applications. 10.1 Introduction -- 10.2 Chemical Modifications of CNTs -- 10.2.1 Oxidative Functionalization of CNTs -- 10.2.2 Polymer/Ionic Liquid Modification of Oxidized CNTs -- 10.2.3 Direct Covalent Modification of CNT -- 10.2.4 Heteroatom Doping of CNTs -- 10.2.5 Charge Transfer/Noncovalent Doping of CNTs -- 10.3 Chemically Modified CNTs in Electronics -- 10.3.1 Transistors -- 10.3.2 Rectifying Diodes -- 10.3.3 Bioelectronics -- 10.4 Chemically Modified CNTs in Photonics -- 10.4.1 Organic Photovoltaics (OPV) -- 10.4.2 Organic Light‐Emitting Diodes (OLEDs) -- 10.4.3 Touch Panels -- 10.5 Summary and Future Scope -- References -- Chapter 11 Chemically Modified Carbon Nanotubes for Electrochemical Sensors -- 11.1 Introduction -- 11.2 Functionalization of Carbon Nanotubes Toward Sensors -- 11.2.1 Covalent Functionalization of CNTs Toward Sensing -- 11.2.2 Noncovalent Functionalization of CNTs Toward Sensing -- 11.2.3 Polymers Wrapping of CNTs Toward Sensing -- 11.2.4 CNTs Decorated with Metal Nanoparticles Toward Sensing -- 11.3 Electrochemical Sensing Applications of CNTs -- 11.3.1 CNT‐Based Sensors for Environment Protection -- 11.3.2 CNT‐Based Sensors for Pharmaceutical Applications -- 11.3.3 Monitoring of Biomolecular Compounds -- 11.3.3.1 Glucose Sensor -- 11.3.3.2 DNA Sensor -- 11.3.4 CNTs‐Based Sensors for Real Sample Analysis -- 11.4 Summary and Outlook -- References -- Chapter 12 Chemically Modified Carbon Nanotubes for Lab on Chip Devices -- Abbreviations -- 12.1 Introduction -- 12.2 Allotropes of Carbon -- 12.2.1 Diamond -- 12.2.2 Graphite -- 12.2.3 Fullerenes -- 12.2.4 Carbon Nanotubes -- 12.2.4.1 SWCNT: Various Synthesis Methods -- 12.2.4.2 Growth Catalysts for SWCNT -- 12.2.4.3 Approach of Introducing the Catalyst on SWCNTs (CVD) Growth -- 12.2.5 Double‐Walled Carbon Nanotubes (DWCNTs) -- 12.2.5.1 Development of DWCNTs. 12.2.5.2 Purification of DWCNTs. |
| Record Nr. | UNINA-9910830038203321 |
| Wiesbaden, Germany : , : Wiley-VCH, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Functionalized carbon nanotubes for biomedical applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, Ruby Aslam
| Functionalized carbon nanotubes for biomedical applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, Ruby Aslam |
| Pubbl/distr/stampa | Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2023] |
| Descrizione fisica | 1 online resource (438 pages) |
| Disciplina | 610.28 |
| Soggetto topico |
Biomedical materials
Carbon nanotubes |
| ISBN |
1-119-90508-7
1-119-90507-9 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Overview of Functionalized Carbon Nanotubes -- Chapter 1 Functionalized Carbon Nanotubes: An Introduction -- 1.1 Introduction -- 1.2 Carbon Nanotube's Classification -- 1.3 Structural and Morphological Analysis of Carbon Nanotubes -- 1.4 Synthetic Techniques of Carbon Nanotubes -- 1.5 Functionalization of Carbon Nanotubes -- 1.6 Commercial Scale Use of Functionalized Carbon Nanotubes -- 1.7 Conclusion and Future Prospects -- References -- Chapter 2 Functionalized Carbon Nanotubes: Synthesis and Characterization -- 2.1 Introduction -- 2.2 Synthesis Methods -- 2.2.1 Arc Discharge -- 2.2.2 Laser Ablation -- 2.2.3 Chemical Vapor Deposition -- 2.3 Characterization -- 2.3.1 Raman Spectroscopy -- 2.3.2 Fourier Transform Infrared Spectroscopy (FT-IR) -- 2.3.3 Thermogravimetric Analysis (TGA) -- 2.3.4 Scanning Electron Microscopy (SEM) -- 2.3.5 Transmission Electron Microscopy (TEM) -- 2.3.6 X-Ray Diffraction (XRD) -- 2.3.7 X-Ray Photoelectron Spectroscopy (XPS) -- 2.4 Functionalized Routes of CNTs -- 2.4.1 Surface Oxidation -- 2.4.2 Doping Heteroatoms -- 2.4.3 Alkali Activation -- 2.4.4 Sulfonation -- 2.4.5 Halogenation -- 2.4.6 Grafting -- 2.4.6.1 Grafting via Oxygen-Containing Groups -- 2.4.6.2 Grafting via Diazonium Compounds -- 2.4.6.3 Other Grafting Methods -- 2.4.7 Non-Covalent Functionalization of CNTs -- 2.4.8 Deposition on Functionalized CNTs -- 2.4.9 Physiochemical Approaches -- 2.4.10 Electrochemical Deposition -- 2.4.11 Electroless Deposition -- 2.5 Conclusion -- References -- Chapter 3 Carbon Nanotubes: Types of Functionalization -- 3.1 Introduction -- 3.2 Carbon Nanotubes -- 3.3 Functionalization of Carbon Nanotubes -- 3.3.1 Covalent Functionalization -- 3.3.2 Non-Covalent Functionalization of Carbon Nanotubes -- 3.3.2.1 Reversibility in Non-Covalent Functionalization.
3.3.2.2 Solvent Variation in Non-Covalent Functionalization -- 3.3.3.3 pH of the System in Non-Covalent Functionalization -- 3.3.3.4 Temperature Responsive System in Non-Covalent Functionalization -- 3.4 Conclusion and Future Outlook -- Acknowledgements -- Web Links -- References -- Chapter 4 Functionalization Carbon Nanotubes Innovate on Medical Technology -- 4.1 Introduction -- 4.2 Functionalization CNTs for Biomedical Applications -- 4.3 Potential Applications of CNTs in Cancer Therapy -- 4.3.1 Anti-Tumor Immunotherapy -- 4.3.2 Anti-Tumor Hyperthermia Therapy -- 4.3.3 Anti-Tumor Chemotherapy -- 4.3.4 Other Cancer Treatment Strategies -- 4.4 Treatment of Central Nervous System Disorders -- 4.5 Treatment of Infectious Diseases -- 4.6 CNTs-Based Transdermal Drug Delivery -- 4.7 f-CNTs for Vaccination -- 4.8 Application of f-CNTs in Tissue Engineering -- 4.9 Conclusion -- Important Websites -- References -- Part 2: Functionalized Carbon Nanotubes: Current and Emerging Biomedical Applications -- Chapter 5 Functionalized Carbon Nanotubes: Applications in Biosensing -- 5.1 Introduction -- 5.2 CNTs-Based Biosensors -- 5.2.1 Electrochemical Biosensors -- 5.2.1.1 Electrochemical Enzyme Sensors -- 5.2.1.2 Electrochemical Immunosensors -- 5.2.1.3 Electrochemical DNA Sensors -- 5.2.1.4 Non-Biomolecule Based Electrochemical Sensors -- 5.2.2 Optical CNT Sensors -- 5.2.3 Field-Effect CNTs Sensors -- 5.2.4 CNT Human Strain Sensor -- 5.3 Conclusion -- References -- Chapter 6 Applications of Functionalized Carbon Nanotubes in Drug Delivery Systems -- 6.1 Introduction -- 6.2 Nanoparticles-Doped Carbon Nanotubes -- 6.3 Brain-Targeted Delivery -- 6.4 The Organic Molecules Functionalized CNTs as Drug Delivery Vehicles -- 6.5 Functionalized CNTs with Nanoparticles for Drug Active Molecular Mechanism. 6.5.1 Future of Scope of Functionalized Carbon Nanotube Drug Delivery Application -- 6.6 Conclusion -- References -- Chapter 7 Functionalized Carbon Nanotubes for Gene Therapy -- 7.1 Introduction -- 7.2 Functionalized CNTs and Gene Therapy -- 7.3 Cellular Uptake of CNT -- 7.4 Functionalized Carbon Nanotubes and Cancer -- 7.5 Miscellaneous Diseases and Gene Delivery Through Functionalized CNT -- 7.6 Toxicology and Environmental Aspects of Functionalized CNT -- 7.6.1 Cellular Toxicity -- 7.6.2 Liver Toxicity -- 7.6.3 Central Nervous System Toxicity -- 7.6.4 Cardiovascular Toxicity -- 7.7 Regulatory Concerns Over Functionalized Carbon Nanotubes -- 7.8 Conclusion and Future Prospects -- Important Website -- References -- Chapter 8 Applications of Functionalized Carbon Nanotubes in Cancer Therapy and Diagnosis -- 8.1 Introduction -- 8.2 Characteristic Properties of CNTs and Their Performance -- 8.2.1 Physicochemical Properties of CNTs -- 8.3 The Techniques of CNTs Functionalization -- 8.4 Application of Carbon Nanotubes in Cancer Therapy and Diagnostic -- 8.4.1 The Use of Carbon Nanotubes in Cancer Treatment -- 8.4.2 Intracellular Targeting Using Carbon Nanotubes -- 8.4.2.1 Nucleus Targeting -- 8.4.2.2 Cytoplasm Targeting -- 8.4.2.3 Mitochondria Targeting -- 8.4.3 CNTs for Immunotherapy -- 8.4.4 Cancer Stem Cell Inhibition -- 8.5 Carbon Nanotubes in Cancer Diagnosis -- 8.5.1 CNTs in Cancer Imaging -- 8.5.1.1 Raman Imaging -- 8.5.1.2 Nuclear Magnetic Resonance Imaging -- 8.5.1.3 Ultrasonography -- 8.5.1.4 Photoacoustic Imaging -- 8.5.1.5 Near‑Infrared Fluorescence Imaging -- 8.6 Future Prospects -- 8.7 Conclusion -- Important Websites -- References -- Chapter 9 Functionalized Carbon Nanotubes for Biomedical Imaging: The Recent Advances -- 9.1 Introduction -- 9.2 CNT-Based Imaging Methods -- 9.2.1 Fluorescence Imaging -- 9.2.2 Raman Imaging. 9.2.3 Photoacoustic Imaging -- 9.2.4 Magnetic Resonance Imaging -- 9.2.5 Nuclear Imaging -- 9.3 Prospects and Challenges -- 9.4 Conclusion -- References -- Chapter 10 Functionalized Carbon Nanotubes for Artificial Bone Tissue Engineering -- 10.1 Introduction -- 10.2 CNT-Based Scaffolds and Implants -- 10.2.1 Hydroxyapatite -- 10.2.2 Polymers -- 10.2.2.1 Poly(ε-Caprolactone) -- 10.2.2.2 Polymethyl-Methacrylate -- 10.2.2.3 Poly(Lactide-Co-Glycolide) -- 10.2.2.4 Poly-L-Lactic Acid -- 10.2.2.5 Polyvinyl Alcohol -- 10.2.2.6 Others -- 10.2.3 Biopolymers -- 10.2.3.1 Chitosan -- 10.2.3.2 Collagen -- 10.2.3.3 Others -- 10.3 Intellectual Property Rights and Commercialization Aspects -- 10.4 Conclusion and Future Perspectives -- References -- Chapter 11 Application of Functionalized Carbon Nanotubes in Biomimetic/Bioinspired Systems -- 11.1 Introduction -- 11.2 Naturally Occurring Materials -- 11.2.1 Nacre and Bone -- 11.2.2 Petal Effect and Gecko Feet -- 11.2.3 Lotus Effect -- 11.2.4 Structural Colors, Antireflection, and Light Collection -- 11.3 Bioinspired Functionalized CNTs Material -- 11.4 Challenges and Solutions in Using CNTs -- 11.5 Conclusion and Perspectives -- References -- Chapter 12 Functionalized Carbon Nanotubes: Applications in Tissue Engineering -- 12.1 Introduction -- 12.2 Structural, Physical, and Chemical Properties -- 12.3 Interactions and Biodegradation of CNTs with Biomolecule -- 12.4 Bio-Security of CNT-Based Scaffolds Toward In Vivo Analyses -- 12.5 CNTs Towards the Bone Compatibility -- 12.6 Applications of Functionalized CNTs in Tissue Engineering -- 12.6.1 Functionalized CNTs for Cardiac Tissue Engineering -- 12.6.2 Functionalized CNTs for Neuronal Tissue Regeneration -- 12.6.3 Functionalized CNT for Cartilage Tissue Engineering -- 12.6.4 CNT for Bone Tissue Regeneration -- 12.7 Future Perspectives and Challenges -- 12.8 Conclusion. Important Websites -- References -- Chapter 13 Functionalized Carbon Nanotubes for Cell Tracking -- Abbreviations -- 13.1 Introduction -- 13.2 Carbon Nanotubes -- 13.2.1 Cellular Interaction of CNTs -- 13.3 Cellular Tracking via CNT -- 13.3.1 Effect of the Surface Coating of CNTs in Single-Particle Tracking -- 13.4 3D Tracking Using CNTs -- 13.4.1 Detection of Single Protein Molecules Through CNTs -- 13.4.2 Stem Cell Labeling and Tracking Through CNTs -- 13.4.3 Labelling and Tracking of Human Pancreatic Cells Through CNTs -- 13.4.4 CNT as Macrophage Carrying Microdevices -- 13.4.4.1 Intracellular Fluctuations and CNT -- 13.4.5 Limitations of CNTs -- 13.5 Concluding Remarks and Future Perspective -- Important Links -- Acknowledgment -- References -- Chapter 14 Functionalized Carbon Nanotubes for Treatment of Various Diseases -- 14.1 Introduction -- 14.2 CNTs: Basic Structure, and Synthesis Methods -- 14.2.1 Structure and Synthesis of CNTs -- 14.2.2 Arc Discharge Technique -- 14.2.3 Laser Ablation Technique -- 14.2.4 Catalytic Chemical Vapor Deposition Technique -- 14.3 Functionalization of CNTs -- 14.3.1 Covalent Functionalization -- 14.3.2 Non-Covalent Functionalization -- 14.4 Toxicity/Bio-Safety Profile of Carbon Nanotubes -- 14.5 Investigating the Promising Biomedical Effects of Functionalized CNTs -- 14.5.1 Functionalized CNTs-Based Remediation of Infectious Diseases -- 14.5.2 Functionalized CNTs for the Treatment of Central Nervous System Disorders (CNS) -- 14.5.3 Functionalized CNTs for Gene Delivery -- 14.5.4 Implication of Functionalized CNTs in Cancer Diagnosis and Treatment -- 14.5.5 Functionalized CNTs for Drug Targeting and Release -- 14.6 Future Prospective -- 14.7 Conclusion -- Important Websites -- References -- Chapter 15 Role of Functionalized Carbon Nanotubes in Antimicrobial Activity: A Review -- 15.1 Introduction. 15.2 Introduction to CNTs. |
| Record Nr. | UNINA-9910830334303321 |
| Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam
| Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam |
| Pubbl/distr/stampa | Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] |
| Descrizione fisica | 1 online resource (496 pages) |
| Collana | Wiley series in corrosion |
| Soggetto topico |
Biopolymers
Corrosion and anti-corrosives |
| ISBN |
1-119-88139-0
1-119-88137-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Intro -- Grafted Biopolymers as Corrosion Inhibitors -- Contents -- About the Editors -- List of Contributors -- Preface -- Part 1 Economic and Legal Issue of Corrosion -- 1 Corrosion: Basics, Economic Adverse Effects, and its Mitigation -- 2 Corrosion Inhibition: Past and Present Developments and Future Directions -- 3 Biopolymers as Corrosion Inhibitors: Relative Inhibition Potential of Biopolymers and Grafted Biopolymers -- 4 Biopolymers vs. Grafted Biopolymers: Challenges and Opportunities -- Part 2 Overview of Sustainable Grafted Biopolymers -- 5 Sustainable Grafted Biopolymers: Synthesis and Characterizations -- 6 Sustainable Grafted Biopolymers: Properties and Applications -- 7 Factors Affecting Biopolymers Grafting -- Part 3 Sustainable Grafted Biopolymers as Corrosion Inhibitors -- 8 Corrosion Inhibitors: Introduction, Classification and Selection Criteria -- 9 Methods of Corrosion Measurement: Chemical, Electrochemical, Surface, and Computational -- 10 Experimental and Computational Methods of Corrosion Assessment: Recent Updates on Concluding Remarks -- 11 Grafted Natural Gums Used as Sustainable Corrosion Inhibitors -- 12 Grafted Pectin as Sustainable Corrosion Inhibitors -- 13 Grafted Chitosan as Sustainable Corrosion Inhibitors -- 14 Grafted Starch Used as Sustainable Corrosion Inhibitors -- 15 Grafted Cellulose as Sustainable Corrosion Inhibitors -- 16 Sodium Alginate: Grafted Alginates as Sustainable Corrosion Inhibitors -- 17 Grafted Dextrin as a Corrosion Inhibitor -- 18 Grafted Biopolymer Composites and Nanocomposites as Sustainable Corrosion Inhibitors -- 19 Industrially Useful Corrosion Inhibitors: Grafted Biopolymers as Ideal Substitutes -- Index -- EULA. |
| Record Nr. | UNINA-9910731598503321 |
| Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Industrial Corrosion : Fundamentals, Failure, Analysis and Prevention
| Industrial Corrosion : Fundamentals, Failure, Analysis and Prevention |
| Autore | Zehra Saman |
| Edizione | [1st ed.] |
| Pubbl/distr/stampa | Newark : , : John Wiley & Sons, Incorporated, , 2025 |
| Descrizione fisica | 1 online resource (0 pages) |
| Disciplina | 620.11223 |
| Altri autori (Persone) |
AslamRuby
MobinMohammad VermaChandrabhan |
| ISBN |
1-394-30156-1
1-394-30155-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Cover -- Series Page -- Title Page -- Copyright Page -- Contents -- Preface -- Chapter 1 Corrosion Fundamentals: Understanding the Science Behind the Damage -- 1.1 Introduction -- 1.2 Types of Corrosion -- 1.2.1 Uniform Corrosion -- 1.2.2 Pitting Corrosion -- 1.2.3 Crevice Corrosion -- 1.2.4 Galvanic Corrosion -- 1.2.5 Intergranular Corrosion -- 1.2.6 Stress Corrosion Cracking (SCC) -- 1.2.7 Erosion Corrosion -- 1.2.8 Corrosion Fatigue -- 1.2.9 Microbiologically Influenced Corrosion (MIC) -- 1.2.10 Hydrogen Embrittlement -- 1.3 Corrosive Environments -- 1.4 Consequences of Corrosion -- 1.5 Corrosion Monitoring in Industrial Environments -- 1.5.1 Physical Examination -- 1.5.2 Exposure Coupons and Electrical Resistance Probes -- 1.5.3 Thin-Layer Activation -- 1.6 Conclusion -- Acknowledgment -- References -- Chapter 2 Types of Industrial Corrosive Environments -- 2.1 Introduction -- 2.2 Specific Types of Industrial Corrosive Environments -- 2.2.1 Atmospheric Corrosive Environments -- 2.2.1.1 Classification of Atmospheric Corrosion -- 2.2.1.2 Parameters Affecting Atmospheric Corrosion -- 2.2.2 Chemical Corrosive Environments -- 2.2.3 Forms of Corrosion -- 2.2.4 Factors Affecting Corrosion -- 2.2.5 Methods of Corrosion Protection -- 2.2.6 Microbiologically Influenced Corrosion (MIC) -- 2.2.7 Microorganisms Found in Gas and Oil -- 2.2.7.1 Microbes Associated with Microbiologically Influenced Corrosion -- 2.2.7.2 Sulfate-Reducing Bacteria -- 2.2.7.3 Iron-Reducing Bacteria -- 2.2.7.4 Sulfur-Oxidizing Bacteria -- 2.2.8 Mechanisms of Microbiologically Influenced Corrosion -- 2.2.8.1 Depolarization of the Cathode by Hydrogenase -- 2.2.8.2 The Anodic Depolarization Mechanism -- 2.3 Conclusion -- References -- Chapter 3 Corrosion in the Oil and Gas Industry -- 3.1 Introduction -- 3.2 Agents of Corrosion in Oil and Gas Industry.
3.3 Types of Corrosion in Oil and Gas Industry -- 3.3.1 Sweet Corrosion -- 3.3.2 Sour Corrosion -- 3.3.3 Microbiologically Induced Corrosion -- 3.3.4 Erosion-Corrosion -- 3.3.5 Crevice Corrosion -- 3.4 Effects of Corrosion on the Oil and Gas Industry -- 3.5 Corrosion Prevention in the Oil and Gas Industry -- 3.6 Challenges and Future Breakthroughs -- 3.7 Conclusion -- References -- Chapter 4 Corrosion in the Marine and Offshore Industry -- 4.1 Introduction -- 4.2 Marine and Offshore Area -- 4.2.1 Seawater Composition -- 4.2.2 Effect of Temperature -- 4.2.3 Microbial Effect -- 4.3 Offshore Structure -- 4.4 Types of Corrosion -- 4.4.1 Uniform Corrosion -- 4.4.2 Pitting Corrosion -- 4.4.3 Crevice Corrosion -- 4.4.4 Galvanic Corrosion -- 4.4.5 Erosion-Corrosion -- 4.4.6 Stress Corrosion Cracking -- 4.4.7 Microbial Corrosion -- 4.5 Corrosion-Inhibition System -- 4.5.1 Cathodic Protection -- 4.5.2 Protective Coating -- 4.5.3 Alloy Selection -- 4.5.4 Design Modification -- 4.6 Challenges and Conclusion -- 4.6.1 Trends in Corrosion Research -- 4.6.2 Corrosion Management -- References -- Chapter 5 Corrosion in the Power Plant Industry -- Abbreviations -- 5.1 Introduction -- 5.2 Types of Corrosion -- 5.2.1 Uniform Corrosion -- 5.2.2 Erosion Corrosion -- 5.2.3 Galvanic Corrosion -- 5.2.4 Crevice Corrosion -- 5.2.5 Stress Corrosion -- 5.3 Corrosion in Thermal Power Plant -- 5.4 Causes of Corrosion -- 5.4.1 Salt -- 5.4.2 Humidity -- 5.4.3 Extreme Temperatures -- 5.4.4 Industrial Lubricants -- 5.4.5 Surface Moisture -- 5.4.6 Airborne Particles -- 5.5 Corrosion in the Electricity Generation Sector -- 5.5.1 Corrosion of Heat Exchanger Materials in Co-Combustion Thermal Power Plants -- 5.5.1.1 Sulfur -- 5.5.1.2 Chlorine -- 5.5.1.3 H2O -- 5.5.1.4 O2 -- 5.5.1.5 CO2 -- 5.5.1.6 Temperature -- 5.5.1.7 The Corrosion Mechanism in Thermal Power Plants. 5.5.2 Factors Contributing to Thermal Energy Storage System Corrosion in Concentrated Solar Power Plants -- 5.5.2.1 Hot Corrosion -- 5.5.2.2 Localized Corrosion -- 5.5.2.3 Mechanically Assisted Corrosion -- 5.5.2.4 Flow-Accelerated Corrosion -- 5.5.3 Corrosion of Nuclear Metallic Materials -- 5.6 Measures to Prevent Corrosion -- 5.6.1 By Surface Coating -- 5.6.2 Through Joining Metal with Additional Electropositive Metal -- 5.6.3 Through Developing a Layer of Insoluble Phosphate or Chromate -- 5.7 Conclusion and Future Research Directions -- References -- Chapter 6 Corrosion in the Chemical Processing Industry -- 6.1 Introduction -- 6.2 Types of Corrosion in the Chemical Processing Industry -- 6.2.1 General Corrosion -- 6.2.2 Localized Corrosion -- 6.2.3 Environmental Cracking -- 6.3 Corrosion Mechanisms in Chemical Processes -- 6.4 Corrosion Control and Prevention -- 6.5 Monitoring and Inspection Techniques -- 6.6 Future Trends and Research Directions -- 6.7 Conclusions -- References -- Chapter 7 Chemical Processing Industry: Corrosion Dynamics and Prevention Techniques -- 7.1 Introduction -- 7.2 Corrosive Materials Within the Chemical Processing Industry -- 7.2.1 Chemical Processing Corrosion -- 7.2.1.1 Chlorine -- 7.2.1.2 Bromine -- 7.2.1.3 Hydrochloric Acid -- 7.2.1.4 Sulfuric Acid -- 7.2.1.5 Ammonia -- 7.2.1.6 Hydrogen -- 7.2.1.7 Oxygen -- 7.3 Corrosion in Specific Industries -- 7.3.1 Nuclear Power Corrosion -- 7.3.1.1 Food and Beverage Corrosion -- 7.4 Conclusion -- 7.5 Future Perspectives -- Acknowledgment -- References -- Chapter 8 Corrosion in the Food and Beverage Industry -- 8.1 Introduction -- 8.2 Corrosive Environment in Food Industry -- 8.3 Various Metals Used in Food Industry and Their Corrosion Phenomenon -- 8.3.1 Corrosion of Steel -- 8.3.2 Corrosion of Stainless Steel (SS) -- 8.3.3 Corrosion of Aluminum -- 8.3.4 Corrosion of Copper. 8.3.5 Corrosion of Other Metals -- 8.4 Corrosion-Related Contamination Incidents -- 8.5 Types of Corrosion in the Food Industry -- 8.6 Factors Affecting Corrosion in Food Industry -- 8.7 Corrosion of Metals: A Literature Survey -- 8.8 Effective Corrosion Prevention -- 8.9 Challenges and Emerging Technologies for Corrosion Prevention -- 8.10 Conclusion -- Acknowledgments -- References -- Chapter 9 Corrosion and Corrosion Inhibition in the Pulp and Paper Industry -- 9.1 Introduction -- 9.2 Liquids Generated in Paper and Pulp Industry -- 9.3 Corrosion Inhibition in Paper and Pulp Industry -- 9.4 Conclusion -- References -- Chapter 10 Corrosion in the Aerospace Industry -- 10.1 Introduction -- 10.2 Factors Influencing Corrosion Susceptibility -- 10.2.1 Material Selection and Composition -- 10.2.2 Environmental Conditions -- 10.2.3 Operational Stresses -- 10.3 Types of Corrosion in Aerospace Applications -- 10.3.1 Atmospheric Corrosion -- 10.3.2 Galvanic Corrosion -- 10.3.3 Stress Corrosion Cracking -- 10.3.4 Corrosion Fatigue -- 10.4 State-of-the-Art Corrosion Mitigation Strategies -- 10.4.1 Protective Coatings -- 10.4.2 Corrosion-Resistant Alloys -- 10.4.3 Advanced Surface Treatments -- 10.4.4 Corrosion Monitoring Techniques -- 10.5 Challenges and Future Outlooks -- 10.6 Conclusion -- References -- Chapter 11 Corrosion in the Automotive Industry -- 11.1 Introduction -- 11.2 Types of Corrosion in the Automotive Industry -- 11.3 Corrosion Mechanisms -- 11.4 Influencing Factors -- 11.5 Protection Methods -- 11.6 Future Trends -- 11.7 Conclusion -- References -- Chapter 12 Corrosion Failures in the Nuclear Power Plant -- 12.1 Corrosion Phenomena in Nuclear Technology -- 12.2 Corrosion in Water-Cooled Reactors -- 12.3 Corrosion in Helium-Cooled Reactors -- 12.4 Corrosion in Molten Salt and Liquid Metal-Cooled Reactors -- 12.5 Stress Corrosion Cracking (SCC). 12.5.1 Mechanisms of SCC -- 12.5.2 Types of SCC -- 12.5.3 Factors Influencing SCC -- 12.6 Flow-Accelerated Corrosion (FAC) -- 12.6.1 Historical Perspective -- 12.6.2 Mechanisms of FAC -- 12.6.3 Characteristics of FAC -- 12.6.4 Conditions Prone to FAC -- 12.7 Corrosion Effects in NPP Aspect -- 12.8 Corrosion Monitoring in Nuclear Power Plants -- 12.8.1 Importance of Corrosion Monitoring -- 12.8.2 Research Into Detection Techniques -- 12.8.3 In Situ Monitoring Developments -- 12.8.4 Future Challenges and Outlook -- 12.8.5 Limitations of Current Monitoring Methods -- 12.8.6 Online Ultratrace Analysis Solution -- 12.9 Corrosion Mitigation in Nuclear Power Plants -- 12.9.1 Corrosion Inhibitors -- 12.9.2 Stress Corrosion Cracking (SCC) -- 12.9.3 Irradiation-Assisted Stress Corrosion Cracking (IASCC) -- 12.9.4 Pressurized Water Stress Corrosion Cracking (PWSCC) -- 12.9.5 Intergranular Stress Corrosion Cracking (IGSCC) -- 12.9.6 Flow-Accelerated Corrosion (FAC) -- 12.9.7 Crud-Induced Localized Corrosion (CILC) -- 12.9.8 Microbial-Induced Corrosion (MIC) -- 12.10 Conclusion -- References -- Chapter 13 Corrosion Monitoring and Inspection Techniques in Industrial Environments -- 13.1 Introduction -- 13.2 Objectives of the Corrosion Monitoring -- 13.3 Elements of Corrosion Monitoring -- 13.4 Corrosion-Monitoring and Inspection Techniques -- 13.4.1 Coupon Technique: Overview and Assembly -- 13.4.2 Electrical Resistance (ER) Probes -- 13.4.2.1 Electrochemical Method -- 13.4.2.2 Field Signature Methods -- 13.4.2.3 Thin Layer Activation (TLA) -- 13.4.2.4 Chemical Analysis -- 13.4.2.5 Monitoring Hydrogen -- 13.4.2.6 Testing of Heat Exchangers and Spool Pieces -- 13.4.2.7 Monitoring of Bacteria -- 13.4.3 Data Management in Corrosion Inspection and Monitoring -- 13.5 Conclusion -- Acknowledgment -- References -- Index -- EULA. |
| Record Nr. | UNINA-9911019939903321 |
Zehra Saman
|
||
| Newark : , : John Wiley & Sons, Incorporated, , 2025 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Sustainable Food Waste Management : Anti-corrosion Applications / / edited by Ruby Aslam, Mohammad Mobin, Jeenat Aslam
| Sustainable Food Waste Management : Anti-corrosion Applications / / edited by Ruby Aslam, Mohammad Mobin, Jeenat Aslam |
| Edizione | [1st ed. 2024.] |
| Pubbl/distr/stampa | Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 |
| Descrizione fisica | 1 online resource (X, 277 p. 56 illus., 44 illus. in color.) |
| Disciplina |
363.728
628.4 |
| Collana | Materials Horizons: From Nature to Nanomaterials |
| Soggetto topico |
Refuse and refuse disposal
Corrosion and anti-corrosives Nanotechnology Food science Waste Management/Waste Technology Corrosion Food Nanotechnology |
| ISBN | 981-9711-60-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto | Corrosion: Basics, Adverse Effects and Its Mitigation -- Corrosion Mitigation using Green Chemicals -- Bio-Waste: Introduction, Origin and Management -- Food Waste: Introduction, and Origin -- Food Waste: Environmental Impact Assessment -- Sustainable Management and Valorisation of Food Waste -- Agricultural Waste as Corrosion Inhibitor -- Vegetable and Fruit/Fruit Juice Waste as Corrosion Inhibitor -- Plant Waste as Corrosion Inhibitor -- Slaughterhouse Trash as Corrosion Inhibitor -- Industrial Corrosion Inhibitors: Food Waste as Ideal Substitutes -- Economics and Commercialization of Food Waste as Corrosion Inhibitors. |
| Record Nr. | UNINA-9910847080903321 |
| Singapore : , : Springer Nature Singapore : , : Imprint : Springer, , 2024 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||