top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Chemically modified carbon nanotubes for commercial applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, and Ruby Aslam
Chemically modified carbon nanotubes for commercial applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, and Ruby Aslam
Pubbl/distr/stampa Wiesbaden, Germany : , : Wiley-VCH, , [2023]
Descrizione fisica 1 online resource (539 pages)
Disciplina 620.115
Soggetto topico Carbon nanotubes
ISBN 3-527-83879-1
3-527-83881-3
3-527-83880-5
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright -- Contents -- Preface -- About the Editors -- Part I Chemically Modified Carbon Nanotubes: Overview, Commercialization, and Economic Aspects -- Chapter 1 A Detailed Study on Carbon Nanotubes: Properties, Synthesis, and Characterization -- 1.1 Introduction -- 1.2 Evolution of Carbon: Graphite to CNTs -- 1.2.1 Graphite -- 1.2.2 Diamond -- 1.2.3 Graphene -- 1.2.3.1 Direct Lattice -- 1.2.3.2 The Reciprocal Lattice -- 1.2.4 Carbon Nanotubes -- 1.2.4.1 SWNTs: Types and Structure -- 1.2.4.2 Chirality -- 1.2.4.3 Electronic Properties of CNTs -- 1.2.4.4 Optical Properties of CNTs -- 1.2.4.5 Chemical Properties of CNTs -- 1.2.4.6 Defects in CNTs -- 1.2.4.7 CNTs Properties Modification by Chemical Functionalization Process -- 1.2.4.8 Applications of CNTs -- 1.2.4.9 Synthesis of CNTs -- 1.2.4.10 Analysis of CNTs by Raman Spectroscopy -- 1.3 Conclusion -- Declaration of Competing Interest -- Companies Dealing with Chemically Modified CNTs -- Acknowledgments -- References -- Chapter 2 Surface Modification Strategies for the Carbon Nanotubes -- 2.1 Introduction -- 2.2 Classification of Carbon Nanotubes and Their Fabrication -- 2.2.1 Arc‐Discharge Method -- 2.2.2 Laser Vapor Deposition -- 2.2.3 Chemical Vapor Deposition (CVD) -- 2.3 Purification of CNTs -- 2.4 Surface Modification of CNTs -- 2.4.1 Methods of Functionalization -- 2.4.2 Noncovalent Functionalization -- 2.4.3 Covalent (Chemical) Functionalization -- 2.4.3.1 Defect‐Group Functionalization -- 2.4.3.2 Sidewall Functionalization -- 2.4.3.3 CNTs Functionalized with Polymer -- 2.4.3.4 CNTs Functionalized with Biomolecules -- 2.4.3.5 CNTs Functionalization with Ionic Liquid (ILs) -- 2.4.3.6 Plasma Activated CNTs -- 2.5 Characterization of CNTs -- 2.6 Conclusion -- References.
Chapter 3 Latest Developments in Commercial Scale Fabrications for Chemically Modified Carbon Nanotubes -- Abbreviations -- 3.1 Introduction -- 3.2 Industrial Scale Fabrication Strategies -- 3.2.1 Basic Chemical Vapor Deposition (CVD) Process -- 3.2.1.1 Industrial Level Fabrication of CNT Through Various CVD Methods -- 3.2.1.2 High‐Pressure Chemical Vapor Deposition -- 3.2.1.3 Atmospheric‐Pressure Chemical Vapor Deposition (APCVD) -- 3.2.1.4 Low‐Pressure Chemical Vapor Deposition (LPCVD) -- 3.3 CVD on the Basis of Reactor Wall Temperature -- 3.3.1 Hot‐Wall Chemical Vapor Deposition (Hot‐Wall CVD) -- 3.3.2 Cold‐Wall Chemical Vapor Deposition (Cold‐Wall CVD) -- 3.4 Arc‐Discharge -- 3.5 Laser Vaporization -- 3.6 Other Synthesis Methods -- 3.7 Applications -- 3.7.1 Transistors -- 3.7.2 Conductor -- 3.7.3 Composites -- 3.7.4 Aerogels -- 3.8 Future Scope -- 3.9 Conclusion -- Conflict of Interest -- Other Sources -- Acknowledgments -- References -- Chapter 4 Economical Uses of Chemically Modified Carbon Nanotubes -- 4.1 Introduction -- 4.2 Properties of Carbon Nanotubes -- 4.3 Synthesis of Carbon Nanotubes -- 4.4 Functionalization of Carbon Nanotubes -- 4.5 Characterization/Analysis of Functionalized Carbon Nanotubes -- 4.6 Economy of Carbon Nanotubes -- 4.7 Economic Importance of Carbon Nanotubes -- 4.8 Hydrogen Fuel Cells -- 4.9 Water Splitting -- 4.10 Dye‐Sensitized Solar Cells -- 4.11 Quantum Dot Solar Cells -- 4.12 Silicon‐Based Solar Cells -- 4.13 Thermoelectric Fabrics -- 4.14 Cost of Carbon Nanotubes -- 4.15 Globalization of Carbon Nanotubes -- 4.16 Conclusion -- References -- Part II Chemically Modified Carbon Nanotubes: Energy and Environment Applications -- Chapter 5 Chemically Modified Carbon Nanotubes in Energy Production and Storage -- Abbreviations -- 5.1 Introduction -- 5.2 Production of Carbon Nanotubes.
5.3 History of Energy Storage Devices and Materials -- 5.4 Carbon Nanotubes for Energy Storage -- 5.4.1 Carbon Nanotube Hybrid for Lithium‐Metal Batteries -- 5.4.2 Wearable Energy Storage with Fiberic Carbon Nanotube -- 5.4.3 Carbon Nanotube Hybrid for Supercapacitor Energy Storage -- 5.4.4 Carbon Nanotubes/Biochar for Energy Storage -- 5.5 Present and Future of Carbon Nanotubes -- 5.6 Commercial‐Scale Application of Chemically Modified CNTs for Energy Storage -- 5.7 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Energy Storage -- References -- Chapter 6 Chemically Modified Carbon Nanotubes for Pollutants Adsorption -- 6.1 Introduction -- 6.2 Chemically Modified CNTs -- 6.3 Chemically Modified CNTs for Adsorptive Removal of Pollutants -- 6.3.1 Organic Dyes -- 6.3.2 Removal of Pharmaceuticals -- 6.3.3 Other Organic Pollutants -- 6.3.4 Metal Ions -- 6.4 Influencing Factors -- 6.5 Adsorption Mechanisms of Chemically Modified CNTs -- 6.6 Modified CNT‐Based Materials Toward Commercialization -- 6.7 Conclusion and Future Perspectives -- Acknowledgments -- References -- Chapter 7 Chemically Modified Carbon Nanotubes in Removal of Textiles Effluents -- 7.1 Introduction -- 7.2 History of Removal of Textiles Effluents -- 7.3 Chemically Modified Carbon Nanotubes -- 7.3.1 Chemical Properties -- 7.3.2 Modification Through Chemical Reduction of Diazonium Salts -- 7.4 Dyes Removal Techniques -- 7.5 Adsorption -- 7.6 Carbon‐Based Nanoadsorbents -- 7.7 Carbon Nanotubes -- 7.8 Carbon Nanotubes as an Adsorption of Dye Molecules -- 7.9 Industrial Application of Synthetic Dyes -- 7.10 Conclusion -- Acknowledgment -- References -- Chapter 8 Chemically Modified Carbon Nanotubes in Membrane Separation -- 8.1 Introduction -- 8.2 Carbon Nanotubes (CNTs) Overview -- 8.3 Method of Synthesis of Carbon Nanotube (CNT) -- 8.3.1 Arc Discharge.
8.3.2 Laser Ablation -- 8.3.3 Chemical Vapor Deposition (CVD) -- 8.3.4 Hydrothermal -- 8.3.5 Electrolysis -- 8.4 Fabrication Methods of CNTs -- 8.4.1 Fabrication of CNT‐Reinforced Metal Matrix Composites (CNT‐MMCs) -- 8.4.2 Microwave‐Assisted Fabrication of CNTs -- 8.5 Functionalization of CNTs -- 8.6 Chemically Modified Derivatization of CNTs -- 8.6.1 Electrochemically Assisted Covalent Modification -- 8.7 Polymer Grafting -- 8.8 Carbon Nanotubes Enhanced with Nanoparticles -- 8.9 Advantages of CNTs -- 8.10 Challenges in CNTs -- 8.11 Applications of CNTs as Membrane Separation -- 8.11.1 Water Treatment -- 8.11.2 Air Filtration -- 8.11.3 Energy Storage: Capacitors and Batteries -- 8.11.4 Electrochemical Separation and Catalysis -- 8.11.5 Electronic Devices Fabrication -- 8.11.6 Environment -- 8.11.7 Biology and Agriculture -- 8.12 Commercial‐Scale of Chemically Modified CNTs in Membrane Separation -- 8.13 Future Insights -- 8.14 Conclusion -- References -- Chapter 9 Chemically Modified Carbon Nanotubes for Water Purification System -- Abbreviations -- 9.1 Introduction -- 9.2 History of Water Purification Methods -- 9.3 Carbon Nanotubes CNTs Types -- 9.4 Vital of Modification of CNTs -- 9.5 Surface Modified CNTs for Water Purification -- 9.6 Polymer/CNTs Grafting for Water Purification -- 9.7 Bulk Modified CNTs for Water Purification -- 9.8 Important of Carbon Nanotubes for Water Purification -- 9.9 Conclusions and Future Research Directions -- 9.10 Commercial Application of Chemically Modified CNTs in Water Purification -- 9.11 Companies Produced CNTs for the Application of Chemically Modified Carbon Nanotubes for Water Purification System -- References -- Part III Chemically Modified Carbon Nanotubes: Electronic and Electrical Applications -- Chapter 10 Chemically Modified Carbon Nanotubes for Electronics and Photonic Applications.
10.1 Introduction -- 10.2 Chemical Modifications of CNTs -- 10.2.1 Oxidative Functionalization of CNTs -- 10.2.2 Polymer/Ionic Liquid Modification of Oxidized CNTs -- 10.2.3 Direct Covalent Modification of CNT -- 10.2.4 Heteroatom Doping of CNTs -- 10.2.5 Charge Transfer/Noncovalent Doping of CNTs -- 10.3 Chemically Modified CNTs in Electronics -- 10.3.1 Transistors -- 10.3.2 Rectifying Diodes -- 10.3.3 Bioelectronics -- 10.4 Chemically Modified CNTs in Photonics -- 10.4.1 Organic Photovoltaics (OPV) -- 10.4.2 Organic Light‐Emitting Diodes (OLEDs) -- 10.4.3 Touch Panels -- 10.5 Summary and Future Scope -- References -- Chapter 11 Chemically Modified Carbon Nanotubes for Electrochemical Sensors -- 11.1 Introduction -- 11.2 Functionalization of Carbon Nanotubes Toward Sensors -- 11.2.1 Covalent Functionalization of CNTs Toward Sensing -- 11.2.2 Noncovalent Functionalization of CNTs Toward Sensing -- 11.2.3 Polymers Wrapping of CNTs Toward Sensing -- 11.2.4 CNTs Decorated with Metal Nanoparticles Toward Sensing -- 11.3 Electrochemical Sensing Applications of CNTs -- 11.3.1 CNT‐Based Sensors for Environment Protection -- 11.3.2 CNT‐Based Sensors for Pharmaceutical Applications -- 11.3.3 Monitoring of Biomolecular Compounds -- 11.3.3.1 Glucose Sensor -- 11.3.3.2 DNA Sensor -- 11.3.4 CNTs‐Based Sensors for Real Sample Analysis -- 11.4 Summary and Outlook -- References -- Chapter 12 Chemically Modified Carbon Nanotubes for Lab on Chip Devices -- Abbreviations -- 12.1 Introduction -- 12.2 Allotropes of Carbon -- 12.2.1 Diamond -- 12.2.2 Graphite -- 12.2.3 Fullerenes -- 12.2.4 Carbon Nanotubes -- 12.2.4.1 SWCNT: Various Synthesis Methods -- 12.2.4.2 Growth Catalysts for SWCNT -- 12.2.4.3 Approach of Introducing the Catalyst on SWCNTs (CVD) Growth -- 12.2.5 Double‐Walled Carbon Nanotubes (DWCNTs) -- 12.2.5.1 Development of DWCNTs.
12.2.5.2 Purification of DWCNTs.
Record Nr. UNINA-9910830038203321
Wiesbaden, Germany : , : Wiley-VCH, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Functionalized carbon nanotubes for biomedical applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, Ruby Aslam
Functionalized carbon nanotubes for biomedical applications / / edited by Jeenat Aslam, Chaudhery Mustansar Hussain, Ruby Aslam
Pubbl/distr/stampa Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2023]
Descrizione fisica 1 online resource (438 pages)
Disciplina 610.28
Soggetto topico Biomedical materials
Carbon nanotubes
ISBN 1-119-90508-7
1-119-90507-9
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Cover -- Title Page -- Copyright Page -- Contents -- Preface -- Part 1: Overview of Functionalized Carbon Nanotubes -- Chapter 1 Functionalized Carbon Nanotubes: An Introduction -- 1.1 Introduction -- 1.2 Carbon Nanotube's Classification -- 1.3 Structural and Morphological Analysis of Carbon Nanotubes -- 1.4 Synthetic Techniques of Carbon Nanotubes -- 1.5 Functionalization of Carbon Nanotubes -- 1.6 Commercial Scale Use of Functionalized Carbon Nanotubes -- 1.7 Conclusion and Future Prospects -- References -- Chapter 2 Functionalized Carbon Nanotubes: Synthesis and Characterization -- 2.1 Introduction -- 2.2 Synthesis Methods -- 2.2.1 Arc Discharge -- 2.2.2 Laser Ablation -- 2.2.3 Chemical Vapor Deposition -- 2.3 Characterization -- 2.3.1 Raman Spectroscopy -- 2.3.2 Fourier Transform Infrared Spectroscopy (FT-IR) -- 2.3.3 Thermogravimetric Analysis (TGA) -- 2.3.4 Scanning Electron Microscopy (SEM) -- 2.3.5 Transmission Electron Microscopy (TEM) -- 2.3.6 X-Ray Diffraction (XRD) -- 2.3.7 X-Ray Photoelectron Spectroscopy (XPS) -- 2.4 Functionalized Routes of CNTs -- 2.4.1 Surface Oxidation -- 2.4.2 Doping Heteroatoms -- 2.4.3 Alkali Activation -- 2.4.4 Sulfonation -- 2.4.5 Halogenation -- 2.4.6 Grafting -- 2.4.6.1 Grafting via Oxygen-Containing Groups -- 2.4.6.2 Grafting via Diazonium Compounds -- 2.4.6.3 Other Grafting Methods -- 2.4.7 Non-Covalent Functionalization of CNTs -- 2.4.8 Deposition on Functionalized CNTs -- 2.4.9 Physiochemical Approaches -- 2.4.10 Electrochemical Deposition -- 2.4.11 Electroless Deposition -- 2.5 Conclusion -- References -- Chapter 3 Carbon Nanotubes: Types of Functionalization -- 3.1 Introduction -- 3.2 Carbon Nanotubes -- 3.3 Functionalization of Carbon Nanotubes -- 3.3.1 Covalent Functionalization -- 3.3.2 Non-Covalent Functionalization of Carbon Nanotubes -- 3.3.2.1 Reversibility in Non-Covalent Functionalization.
3.3.2.2 Solvent Variation in Non-Covalent Functionalization -- 3.3.3.3 pH of the System in Non-Covalent Functionalization -- 3.3.3.4 Temperature Responsive System in Non-Covalent Functionalization -- 3.4 Conclusion and Future Outlook -- Acknowledgements -- Web Links -- References -- Chapter 4 Functionalization Carbon Nanotubes Innovate on Medical Technology -- 4.1 Introduction -- 4.2 Functionalization CNTs for Biomedical Applications -- 4.3 Potential Applications of CNTs in Cancer Therapy -- 4.3.1 Anti-Tumor Immunotherapy -- 4.3.2 Anti-Tumor Hyperthermia Therapy -- 4.3.3 Anti-Tumor Chemotherapy -- 4.3.4 Other Cancer Treatment Strategies -- 4.4 Treatment of Central Nervous System Disorders -- 4.5 Treatment of Infectious Diseases -- 4.6 CNTs-Based Transdermal Drug Delivery -- 4.7 f-CNTs for Vaccination -- 4.8 Application of f-CNTs in Tissue Engineering -- 4.9 Conclusion -- Important Websites -- References -- Part 2: Functionalized Carbon Nanotubes: Current and Emerging Biomedical Applications -- Chapter 5 Functionalized Carbon Nanotubes: Applications in Biosensing -- 5.1 Introduction -- 5.2 CNTs-Based Biosensors -- 5.2.1 Electrochemical Biosensors -- 5.2.1.1 Electrochemical Enzyme Sensors -- 5.2.1.2 Electrochemical Immunosensors -- 5.2.1.3 Electrochemical DNA Sensors -- 5.2.1.4 Non-Biomolecule Based Electrochemical Sensors -- 5.2.2 Optical CNT Sensors -- 5.2.3 Field-Effect CNTs Sensors -- 5.2.4 CNT Human Strain Sensor -- 5.3 Conclusion -- References -- Chapter 6 Applications of Functionalized Carbon Nanotubes in Drug Delivery Systems -- 6.1 Introduction -- 6.2 Nanoparticles-Doped Carbon Nanotubes -- 6.3 Brain-Targeted Delivery -- 6.4 The Organic Molecules Functionalized CNTs as Drug Delivery Vehicles -- 6.5 Functionalized CNTs with Nanoparticles for Drug Active Molecular Mechanism.
6.5.1 Future of Scope of Functionalized Carbon Nanotube Drug Delivery Application -- 6.6 Conclusion -- References -- Chapter 7 Functionalized Carbon Nanotubes for Gene Therapy -- 7.1 Introduction -- 7.2 Functionalized CNTs and Gene Therapy -- 7.3 Cellular Uptake of CNT -- 7.4 Functionalized Carbon Nanotubes and Cancer -- 7.5 Miscellaneous Diseases and Gene Delivery Through Functionalized CNT -- 7.6 Toxicology and Environmental Aspects of Functionalized CNT -- 7.6.1 Cellular Toxicity -- 7.6.2 Liver Toxicity -- 7.6.3 Central Nervous System Toxicity -- 7.6.4 Cardiovascular Toxicity -- 7.7 Regulatory Concerns Over Functionalized Carbon Nanotubes -- 7.8 Conclusion and Future Prospects -- Important Website -- References -- Chapter 8 Applications of Functionalized Carbon Nanotubes in Cancer Therapy and Diagnosis -- 8.1 Introduction -- 8.2 Characteristic Properties of CNTs and Their Performance -- 8.2.1 Physicochemical Properties of CNTs -- 8.3 The Techniques of CNTs Functionalization -- 8.4 Application of Carbon Nanotubes in Cancer Therapy and Diagnostic -- 8.4.1 The Use of Carbon Nanotubes in Cancer Treatment -- 8.4.2 Intracellular Targeting Using Carbon Nanotubes -- 8.4.2.1 Nucleus Targeting -- 8.4.2.2 Cytoplasm Targeting -- 8.4.2.3 Mitochondria Targeting -- 8.4.3 CNTs for Immunotherapy -- 8.4.4 Cancer Stem Cell Inhibition -- 8.5 Carbon Nanotubes in Cancer Diagnosis -- 8.5.1 CNTs in Cancer Imaging -- 8.5.1.1 Raman Imaging -- 8.5.1.2 Nuclear Magnetic Resonance Imaging -- 8.5.1.3 Ultrasonography -- 8.5.1.4 Photoacoustic Imaging -- 8.5.1.5 Near‑Infrared Fluorescence Imaging -- 8.6 Future Prospects -- 8.7 Conclusion -- Important Websites -- References -- Chapter 9 Functionalized Carbon Nanotubes for Biomedical Imaging: The Recent Advances -- 9.1 Introduction -- 9.2 CNT-Based Imaging Methods -- 9.2.1 Fluorescence Imaging -- 9.2.2 Raman Imaging.
9.2.3 Photoacoustic Imaging -- 9.2.4 Magnetic Resonance Imaging -- 9.2.5 Nuclear Imaging -- 9.3 Prospects and Challenges -- 9.4 Conclusion -- References -- Chapter 10 Functionalized Carbon Nanotubes for Artificial Bone Tissue Engineering -- 10.1 Introduction -- 10.2 CNT-Based Scaffolds and Implants -- 10.2.1 Hydroxyapatite -- 10.2.2 Polymers -- 10.2.2.1 Poly(ε-Caprolactone) -- 10.2.2.2 Polymethyl-Methacrylate -- 10.2.2.3 Poly(Lactide-Co-Glycolide) -- 10.2.2.4 Poly-L-Lactic Acid -- 10.2.2.5 Polyvinyl Alcohol -- 10.2.2.6 Others -- 10.2.3 Biopolymers -- 10.2.3.1 Chitosan -- 10.2.3.2 Collagen -- 10.2.3.3 Others -- 10.3 Intellectual Property Rights and Commercialization Aspects -- 10.4 Conclusion and Future Perspectives -- References -- Chapter 11 Application of Functionalized Carbon Nanotubes in Biomimetic/Bioinspired Systems -- 11.1 Introduction -- 11.2 Naturally Occurring Materials -- 11.2.1 Nacre and Bone -- 11.2.2 Petal Effect and Gecko Feet -- 11.2.3 Lotus Effect -- 11.2.4 Structural Colors, Antireflection, and Light Collection -- 11.3 Bioinspired Functionalized CNTs Material -- 11.4 Challenges and Solutions in Using CNTs -- 11.5 Conclusion and Perspectives -- References -- Chapter 12 Functionalized Carbon Nanotubes: Applications in Tissue Engineering -- 12.1 Introduction -- 12.2 Structural, Physical, and Chemical Properties -- 12.3 Interactions and Biodegradation of CNTs with Biomolecule -- 12.4 Bio-Security of CNT-Based Scaffolds Toward In Vivo Analyses -- 12.5 CNTs Towards the Bone Compatibility -- 12.6 Applications of Functionalized CNTs in Tissue Engineering -- 12.6.1 Functionalized CNTs for Cardiac Tissue Engineering -- 12.6.2 Functionalized CNTs for Neuronal Tissue Regeneration -- 12.6.3 Functionalized CNT for Cartilage Tissue Engineering -- 12.6.4 CNT for Bone Tissue Regeneration -- 12.7 Future Perspectives and Challenges -- 12.8 Conclusion.
Important Websites -- References -- Chapter 13 Functionalized Carbon Nanotubes for Cell Tracking -- Abbreviations -- 13.1 Introduction -- 13.2 Carbon Nanotubes -- 13.2.1 Cellular Interaction of CNTs -- 13.3 Cellular Tracking via CNT -- 13.3.1 Effect of the Surface Coating of CNTs in Single-Particle Tracking -- 13.4 3D Tracking Using CNTs -- 13.4.1 Detection of Single Protein Molecules Through CNTs -- 13.4.2 Stem Cell Labeling and Tracking Through CNTs -- 13.4.3 Labelling and Tracking of Human Pancreatic Cells Through CNTs -- 13.4.4 CNT as Macrophage Carrying Microdevices -- 13.4.4.1 Intracellular Fluctuations and CNT -- 13.4.5 Limitations of CNTs -- 13.5 Concluding Remarks and Future Perspective -- Important Links -- Acknowledgment -- References -- Chapter 14 Functionalized Carbon Nanotubes for Treatment of Various Diseases -- 14.1 Introduction -- 14.2 CNTs: Basic Structure, and Synthesis Methods -- 14.2.1 Structure and Synthesis of CNTs -- 14.2.2 Arc Discharge Technique -- 14.2.3 Laser Ablation Technique -- 14.2.4 Catalytic Chemical Vapor Deposition Technique -- 14.3 Functionalization of CNTs -- 14.3.1 Covalent Functionalization -- 14.3.2 Non-Covalent Functionalization -- 14.4 Toxicity/Bio-Safety Profile of Carbon Nanotubes -- 14.5 Investigating the Promising Biomedical Effects of Functionalized CNTs -- 14.5.1 Functionalized CNTs-Based Remediation of Infectious Diseases -- 14.5.2 Functionalized CNTs for the Treatment of Central Nervous System Disorders (CNS) -- 14.5.3 Functionalized CNTs for Gene Delivery -- 14.5.4 Implication of Functionalized CNTs in Cancer Diagnosis and Treatment -- 14.5.5 Functionalized CNTs for Drug Targeting and Release -- 14.6 Future Prospective -- 14.7 Conclusion -- Important Websites -- References -- Chapter 15 Role of Functionalized Carbon Nanotubes in Antimicrobial Activity: A Review -- 15.1 Introduction.
15.2 Introduction to CNTs.
Record Nr. UNINA-9910830334303321
Beverly, Massachusetts ; ; Hoboken, New Jersey : , : Scrivener Publishing : , : Wiley, , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam
Grafted biopolymers as corrosion inhibitors : safety, sustainability, and efficiency / / edited by Jeenat Aslam, Chandrabhan Verma, and Ruby Aslam
Pubbl/distr/stampa Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Descrizione fisica 1 online resource (496 pages)
Collana Wiley series in corrosion
Soggetto topico Biopolymers
Corrosion and anti-corrosives
ISBN 1-119-88139-0
1-119-88137-4
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Grafted Biopolymers as Corrosion Inhibitors -- Contents -- About the Editors -- List of Contributors -- Preface -- Part 1 Economic and Legal Issue of Corrosion -- 1 Corrosion: Basics, Economic Adverse Effects, and its Mitigation -- 2 Corrosion Inhibition: Past and Present Developments and Future Directions -- 3 Biopolymers as Corrosion Inhibitors: Relative Inhibition Potential of Biopolymers and Grafted Biopolymers -- 4 Biopolymers vs. Grafted Biopolymers: Challenges and Opportunities -- Part 2 Overview of Sustainable Grafted Biopolymers -- 5 Sustainable Grafted Biopolymers: Synthesis and Characterizations -- 6 Sustainable Grafted Biopolymers: Properties and Applications -- 7 Factors Affecting Biopolymers Grafting -- Part 3 Sustainable Grafted Biopolymers as Corrosion Inhibitors -- 8 Corrosion Inhibitors: Introduction, Classification and Selection Criteria -- 9 Methods of Corrosion Measurement: Chemical, Electrochemical, Surface, and Computational -- 10 Experimental and Computational Methods of Corrosion Assessment: Recent Updates on Concluding Remarks -- 11 Grafted Natural Gums Used as Sustainable Corrosion Inhibitors -- 12 Grafted Pectin as Sustainable Corrosion Inhibitors -- 13 Grafted Chitosan as Sustainable Corrosion Inhibitors -- 14 Grafted Starch Used as Sustainable Corrosion Inhibitors -- 15 Grafted Cellulose as Sustainable Corrosion Inhibitors -- 16 Sodium Alginate: Grafted Alginates as Sustainable Corrosion Inhibitors -- 17 Grafted Dextrin as a Corrosion Inhibitor -- 18 Grafted Biopolymer Composites and Nanocomposites as Sustainable Corrosion Inhibitors -- 19 Industrially Useful Corrosion Inhibitors: Grafted Biopolymers as Ideal Substitutes -- Index -- EULA.
Record Nr. UNINA-9910731598503321
Hoboken, NJ : , : John Wiley & Sons, Inc., , [2023]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui