3-manifold groups are virtually residually p / / Matthias Aschenbrenner, Stefan Friedl
| 3-manifold groups are virtually residually p / / Matthias Aschenbrenner, Stefan Friedl |
| Autore | Aschenbrenner Matthias <1972-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2013 |
| Descrizione fisica | 1 online resource (114 p.) |
| Disciplina | 514.34 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Group theory
Three-manifolds (Topology) Fundamental groups (Mathematics) |
| Soggetto genere / forma | Electronic books. |
| ISBN | 1-4704-1058-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""The main result""; ""Applications""; ""Properties of linear groups and 3-manifold groups""; ""Outline of the proof strategy""; ""A more general theorem?""; ""Graph manifolds""; ""Guide for the reader""; ""Conventions and notations""; ""Acknowledgments""; ""Chapter 1. Preliminaries""; ""1.1. Filtrations of groups""; ""1.2. Graphs of groups""; ""Chapter 2. Embedding Theorems for -Groups""; ""2.1. An amalgamation theorem for filtered -groups""; ""2.2. Extending partial automorphisms to inner automorphisms""
""Chapter 3. Residual Properties of Graphs of Groups""""3.1. Root properties and fundamental groups of graphs of groups""; ""3.2. A criterion for being residually ""; ""3.3. Unfolding a graph of groups""; ""3.4. A criterion for being virtually residually ""; ""Chapter 4. Proof of the Main Results""; ""4.1. -compatible filtrations""; ""4.2. -compatible filtrations of linear groups""; ""4.3. Proof of the main theorem""; ""4.4. A localization theorem""; ""4.5. Fibered 3-manifolds""; ""Chapter 5. The Case of Graph Manifolds""; ""5.1. -efficiency""; ""5.2. Cohomological -completeness"" ""5.3. Virtual -efficiency for arbitrary 3-manifolds?""""5.4. The mod homology graph""; ""Bibliography""; ""Index"" |
| Record Nr. | UNINA-9910480621803321 |
Aschenbrenner Matthias <1972->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
3-manifold groups are virtually residually p / / Matthias Aschenbrenner, Stefan Friedl
| 3-manifold groups are virtually residually p / / Matthias Aschenbrenner, Stefan Friedl |
| Autore | Aschenbrenner Matthias <1972-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2013 |
| Descrizione fisica | 1 online resource (114 p.) |
| Disciplina | 514.34 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Group theory
Three-manifolds (Topology) Fundamental groups (Mathematics) |
| ISBN | 1-4704-1058-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""The main result""; ""Applications""; ""Properties of linear groups and 3-manifold groups""; ""Outline of the proof strategy""; ""A more general theorem?""; ""Graph manifolds""; ""Guide for the reader""; ""Conventions and notations""; ""Acknowledgments""; ""Chapter 1. Preliminaries""; ""1.1. Filtrations of groups""; ""1.2. Graphs of groups""; ""Chapter 2. Embedding Theorems for -Groups""; ""2.1. An amalgamation theorem for filtered -groups""; ""2.2. Extending partial automorphisms to inner automorphisms""
""Chapter 3. Residual Properties of Graphs of Groups""""3.1. Root properties and fundamental groups of graphs of groups""; ""3.2. A criterion for being residually ""; ""3.3. Unfolding a graph of groups""; ""3.4. A criterion for being virtually residually ""; ""Chapter 4. Proof of the Main Results""; ""4.1. -compatible filtrations""; ""4.2. -compatible filtrations of linear groups""; ""4.3. Proof of the main theorem""; ""4.4. A localization theorem""; ""4.5. Fibered 3-manifolds""; ""Chapter 5. The Case of Graph Manifolds""; ""5.1. -efficiency""; ""5.2. Cohomological -completeness"" ""5.3. Virtual -efficiency for arbitrary 3-manifolds?""""5.4. The mod homology graph""; ""Bibliography""; ""Index"" |
| Altri titoli varianti | Three-manifold groups are virtually residually p |
| Record Nr. | UNINA-9910796037903321 |
Aschenbrenner Matthias <1972->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
3-manifold groups are virtually residually p / / Matthias Aschenbrenner, Stefan Friedl
| 3-manifold groups are virtually residually p / / Matthias Aschenbrenner, Stefan Friedl |
| Autore | Aschenbrenner Matthias <1972-> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society, , 2013 |
| Descrizione fisica | 1 online resource (114 p.) |
| Disciplina | 514.34 |
| Collana | Memoirs of the American Mathematical Society |
| Soggetto topico |
Group theory
Three-manifolds (Topology) Fundamental groups (Mathematics) |
| ISBN | 1-4704-1058-3 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
""Contents""; ""Introduction""; ""The main result""; ""Applications""; ""Properties of linear groups and 3-manifold groups""; ""Outline of the proof strategy""; ""A more general theorem?""; ""Graph manifolds""; ""Guide for the reader""; ""Conventions and notations""; ""Acknowledgments""; ""Chapter 1. Preliminaries""; ""1.1. Filtrations of groups""; ""1.2. Graphs of groups""; ""Chapter 2. Embedding Theorems for -Groups""; ""2.1. An amalgamation theorem for filtered -groups""; ""2.2. Extending partial automorphisms to inner automorphisms""
""Chapter 3. Residual Properties of Graphs of Groups""""3.1. Root properties and fundamental groups of graphs of groups""; ""3.2. A criterion for being residually ""; ""3.3. Unfolding a graph of groups""; ""3.4. A criterion for being virtually residually ""; ""Chapter 4. Proof of the Main Results""; ""4.1. -compatible filtrations""; ""4.2. -compatible filtrations of linear groups""; ""4.3. Proof of the main theorem""; ""4.4. A localization theorem""; ""4.5. Fibered 3-manifolds""; ""Chapter 5. The Case of Graph Manifolds""; ""5.1. -efficiency""; ""5.2. Cohomological -completeness"" ""5.3. Virtual -efficiency for arbitrary 3-manifolds?""""5.4. The mod homology graph""; ""Bibliography""; ""Index"" |
| Altri titoli varianti | Three-manifold groups are virtually residually p |
| Record Nr. | UNINA-9910827633103321 |
Aschenbrenner Matthias <1972->
|
||
| Providence, Rhode Island : , : American Mathematical Society, , 2013 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||