Exposition by Emil Artin : a selection / / Michael Rosen, editor
| Exposition by Emil Artin : a selection / / Michael Rosen, editor |
| Autore | Artin Emil <1898-1962.> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007 |
| Descrizione fisica | 1 online resource (348 pages) : illustrations |
| Disciplina | 510 |
| Collana | History of Mathematics |
| Soggetto topico |
Algebraic fields
Galois theory Gamma functions |
| ISBN | 1-4704-3897-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910794720003321 |
Artin Emil <1898-1962.>
|
||
| Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Exposition by Emil Artin : a selection / / Michael Rosen, editor
| Exposition by Emil Artin : a selection / / Michael Rosen, editor |
| Autore | Artin Emil <1898-1962.> |
| Pubbl/distr/stampa | Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007 |
| Descrizione fisica | 1 online resource (348 pages) : illustrations |
| Disciplina | 510 |
| Collana | History of Mathematics |
| Soggetto topico |
Algebraic fields
Galois theory Gamma functions |
| ISBN | 1-4704-3897-6 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Record Nr. | UNINA-9910820838203321 |
Artin Emil <1898-1962.>
|
||
| Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Geometric algebra [[electronic resource] /] / E. Artin
| Geometric algebra [[electronic resource] /] / E. Artin |
| Autore | Artin Emil <1898-1962.> |
| Edizione | [Wiley classics library ed.] |
| Pubbl/distr/stampa | New York, : Interscience Publishers, 1988, c1957 |
| Descrizione fisica | 1 online resource (226 p.) |
| Disciplina | 512.5 |
| Collana | Wiley classics library |
| Soggetto topico |
Algebras, Linear
Geometry, Projective |
| ISBN |
1-283-33250-7
9786613332509 1-118-16451-2 1-118-16454-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group 1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index |
| Record Nr. | UNINA-9910561301103321 |
Artin Emil <1898-1962.>
|
||
| New York, : Interscience Publishers, 1988, c1957 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Geometric algebra [[electronic resource] /] / E. Artin
| Geometric algebra [[electronic resource] /] / E. Artin |
| Autore | Artin Emil <1898-1962.> |
| Edizione | [Wiley classics library ed.] |
| Pubbl/distr/stampa | New York, : Interscience Publishers, 1988, c1957 |
| Descrizione fisica | 1 online resource (226 p.) |
| Disciplina | 512.5 |
| Collana | Wiley classics library |
| Soggetto topico |
Algebras, Linear
Geometry, Projective |
| ISBN |
1-283-33250-7
9786613332509 1-118-16451-2 1-118-16454-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group 1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index |
| Record Nr. | UNISA-996209064303316 |
Artin Emil <1898-1962.>
|
||
| New York, : Interscience Publishers, 1988, c1957 | ||
| Lo trovi qui: Univ. di Salerno | ||
| ||
Geometric algebra [[electronic resource] /] / E. Artin
| Geometric algebra [[electronic resource] /] / E. Artin |
| Autore | Artin Emil <1898-1962.> |
| Edizione | [Wiley classics library ed.] |
| Pubbl/distr/stampa | New York, : Interscience Publishers, 1988, c1957 |
| Descrizione fisica | 1 online resource (226 p.) |
| Disciplina | 512.5 |
| Collana | Wiley classics library |
| Soggetto topico |
Algebras, Linear
Geometry, Projective |
| ISBN |
1-283-33250-7
9786613332509 1-118-16451-2 1-118-16454-7 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group 1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index |
| Record Nr. | UNINA-9910830675503321 |
Artin Emil <1898-1962.>
|
||
| New York, : Interscience Publishers, 1988, c1957 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Geometric algebra / / E. Artin
| Geometric algebra / / E. Artin |
| Autore | Artin Emil <1898-1962.> |
| Edizione | [Wiley classics library ed.] |
| Pubbl/distr/stampa | New York, : Interscience Publishers, 1988, c1957 |
| Descrizione fisica | 1 online resource (226 p.) |
| Disciplina | 512.5 |
| Collana | Wiley classics library |
| Soggetto topico |
Algebras, Linear
Geometry, Projective |
| ISBN |
9786613332509
9781283332507 1283332507 9781118164518 1118164512 9781118164549 1118164547 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group 1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index |
| Record Nr. | UNINA-9911019821103321 |
Artin Emil <1898-1962.>
|
||
| New York, : Interscience Publishers, 1988, c1957 | ||
| Lo trovi qui: Univ. Federico II | ||
| ||