top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Exposition by Emil Artin : a selection / / Michael Rosen, editor
Exposition by Emil Artin : a selection / / Michael Rosen, editor
Autore Artin Emil <1898-1962.>
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007
Descrizione fisica 1 online resource (348 pages) : illustrations
Disciplina 510
Collana History of Mathematics
Soggetto topico Algebraic fields
Galois theory
Gamma functions
ISBN 1-4704-3897-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910794720003321
Artin Emil <1898-1962.>  
Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Exposition by Emil Artin : a selection / / Michael Rosen, editor
Exposition by Emil Artin : a selection / / Michael Rosen, editor
Autore Artin Emil <1898-1962.>
Pubbl/distr/stampa Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007
Descrizione fisica 1 online resource (348 pages) : illustrations
Disciplina 510
Collana History of Mathematics
Soggetto topico Algebraic fields
Galois theory
Gamma functions
ISBN 1-4704-3897-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910820838203321
Artin Emil <1898-1962.>  
Providence, Rhode Island : , : American Mathematical Society : , : London Mathematical Society, , 2007
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometric algebra [[electronic resource] /] / E. Artin
Geometric algebra [[electronic resource] /] / E. Artin
Autore Artin Emil <1898-1962.>
Edizione [Wiley classics library ed.]
Pubbl/distr/stampa New York, : Interscience Publishers, 1988, c1957
Descrizione fisica 1 online resource (226 p.)
Disciplina 512.5
Collana Wiley classics library
Soggetto topico Algebras, Linear
Geometry, Projective
ISBN 1-283-33250-7
9786613332509
1-118-16451-2
1-118-16454-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group
1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index
Record Nr. UNINA-9910561301103321
Artin Emil <1898-1962.>  
New York, : Interscience Publishers, 1988, c1957
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometric algebra [[electronic resource] /] / E. Artin
Geometric algebra [[electronic resource] /] / E. Artin
Autore Artin Emil <1898-1962.>
Edizione [Wiley classics library ed.]
Pubbl/distr/stampa New York, : Interscience Publishers, 1988, c1957
Descrizione fisica 1 online resource (226 p.)
Disciplina 512.5
Collana Wiley classics library
Soggetto topico Algebras, Linear
Geometry, Projective
ISBN 1-283-33250-7
9786613332509
1-118-16451-2
1-118-16454-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group
1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index
Record Nr. UNISA-996209064303316
Artin Emil <1898-1962.>  
New York, : Interscience Publishers, 1988, c1957
Materiale a stampa
Lo trovi qui: Univ. di Salerno
Opac: Controlla la disponibilità qui
Geometric algebra [[electronic resource] /] / E. Artin
Geometric algebra [[electronic resource] /] / E. Artin
Autore Artin Emil <1898-1962.>
Edizione [Wiley classics library ed.]
Pubbl/distr/stampa New York, : Interscience Publishers, 1988, c1957
Descrizione fisica 1 online resource (226 p.)
Disciplina 512.5
Collana Wiley classics library
Soggetto topico Algebras, Linear
Geometry, Projective
ISBN 1-283-33250-7
9786613332509
1-118-16451-2
1-118-16454-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group
1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index
Record Nr. UNINA-9910830675503321
Artin Emil <1898-1962.>  
New York, : Interscience Publishers, 1988, c1957
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Geometric algebra / / E. Artin
Geometric algebra / / E. Artin
Autore Artin Emil <1898-1962.>
Edizione [Wiley classics library ed.]
Pubbl/distr/stampa New York, : Interscience Publishers, 1988, c1957
Descrizione fisica 1 online resource (226 p.)
Disciplina 512.5
Collana Wiley classics library
Soggetto topico Algebras, Linear
Geometry, Projective
ISBN 1-283-33250-7
9786613332509
1-118-16451-2
1-118-16454-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Geometric Algebra; Preface; Suggestions for the Use of This Book; CONTENTS; CHAPTER I Preliminary Notions; 1. Notions of set theory; 2. Theorems on vector spaces; 3. More detailed structure of homomorphisms; 4. Duality and pairing; 5. Linear equations; 6. Suggestions for an exercise; 7. Notions of group theory; 8. Notions of field theory; 9. Ordered fields; 10. Valuations; CHAPTER II Affine and Projective Geometry; 1. Introduction and the first three axioms; 2. Dilatations and translations; 3. Construction of the field; 4. Introduction of coordinates; 5. Affine geometry based on a given field
6. Desargues' theorem7. Pappus' theorem and the commutative law; 8. Ordered geometry; 9. Harmonic points; 10. The fundamental theorem of projective geometry; 11. The projective plane; CHAPTER III Symplectic and Orthogonal Geometry; 1. Metric structures on vector spaces; 2. Definitions of symplectic and orthogonal geometry; 3. Common features of orthogonal and symplectic geometry; 4. Special features of orthogonal geometry; 5. Special features of symplectic geometry; 6. Geometry over finite fields; 7. Geometry over ordered fields-Sylvester's theorem; CHAPTER IV The General Linear Group
1. Non-commutative determinants2. The structure of GLn(κ); 3. Vector spaces over finite fields; CHAPTER V The Structure of Symplectic and Orthogonal Groups; 1. Structure of the symplectic group; 2. The orthogonal group of euclidean space; 3. Elliptic spaces; 4. The Clifford algebra; 5. The spinorial norm; 6. The cases dim V < 4; 7. The structure of the group Ω(V); Bibliography; Index
Record Nr. UNINA-9910877477003321
Artin Emil <1898-1962.>  
New York, : Interscience Publishers, 1988, c1957
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui