Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan
| Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan |
| Autore | Arslan Hüseyin <1968-> |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
| Descrizione fisica | 1 online resource (467 pages) |
| Disciplina | 621.384 |
| Soggetto topico | Wireless communication systems |
| Soggetto genere / forma | Electronic books. |
| ISBN |
1-119-76443-2
1-119-76444-0 1-119-76442-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Acronyms List -- Chapter 1 Hands‐on Wireless Communication Experience -- 1.1 Importance of Laboratory‐Based Learning of Wireless Communications -- 1.2 Model for a Practical Lab Bench -- 1.3 Examples of Co‐simulation with Hardware -- 1.4 A Sample Model for a Laboratory Course -- 1.4.1 Introduction to the SDR and Testbed Platform -- 1.4.2 Basic Simulation -- 1.4.3 Measurements and Multidimensional Signal Analysis -- 1.4.4 Digital Modulation -- 1.4.5 Pulse Shaping -- 1.4.6 RF Front‐end and RF Impairments -- 1.4.7 Wireless Channel and Interference -- 1.4.8 Synchronization and Channel Estimation -- 1.4.9 OFDM Signal Analysis and Performance Evaluation -- 1.4.10 Multiple Accessing -- 1.4.11 Independent Project Development Phase -- 1.4.11.1 Software Defined Radio -- 1.4.11.2 Dynamic Spectrum Access and CR Experiment -- 1.4.11.3 Wireless Channel -- 1.4.11.4 Wireless Channel Counteractions -- 1.4.11.5 Antenna Project -- 1.4.11.6 Signal Intelligence -- 1.4.11.7 Channel, User, and Context Awareness Project -- 1.4.11.8 Combination of DSP Lab with RF and Microwave Lab -- 1.4.11.9 Multiple Access and Interference Management -- 1.4.11.10 Standards -- 1.5 Conclusions -- References -- Chapter 2 Performance Metrics and Measurements -- 2.1 Signal Quality Measurements -- 2.1.1 Measurements Before Demodulation -- 2.1.2 Measurements During and After Demodulation -- 2.1.2.1 Noise Figure -- 2.1.2.2 Channel Frequency Response Estimation -- 2.1.3 Measurements After Channel Decoding -- 2.1.3.1 Relation of SNR with BER -- 2.1.4 Error Vector Magnitude -- 2.1.4.1 Error‐Vector‐Time and Error‐Vector‐Frequency -- 2.1.4.2 Relation of EVM with Other Metrics -- 2.1.4.3 Rho -- 2.1.5 Measures After Speech or Video Decoding -- 2.2 Visual Inspections and Useful Plots -- 2.2.1 Advanced Scatter Plot.
2.3 Cognitive Radio and SDR Measurements -- 2.4 Other Measurements -- 2.5 Clarifying dB and dBm -- 2.6 Conclusions -- References -- Chapter 3 Multidimensional Signal Analysis -- 3.1 Why Multiple Dimensions in a Radio Signal? -- 3.2 Time Domain Analysis -- 3.2.1 CCDF and PAPR -- 3.2.2 Time Selectivity Measure -- 3.3 Frequency Domain Analysis -- 3.3.1 Adjacent Channel Power Ratio -- 3.3.2 Frequency Selectivity Measure -- 3.4 Joint Time‐Frequency Analysis -- 3.5 Code Domain Analysis -- 3.5.1 Code Selectivity -- 3.6 Correlation Analysis -- 3.7 Modulation Domain Analysis -- 3.8 Angular Domain Analysis -- 3.8.1 Direction Finding -- 3.8.2 Angular Spread -- 3.9 MIMO Measurements -- 3.9.1 Antenna Correlation -- 3.9.2 RF Cross‐Coupling -- 3.9.3 EVM Versus Antenna Branches -- 3.9.4 Channel Parameters -- 3.10 Conclusions -- References -- Chapter 4 Simulating a Communication System -- 4.1 Simulation: What, Why? -- 4.2 Approaching a Simulation -- 4.2.1 Strategy -- 4.2.2 General Methodology -- 4.3 Basic Modeling Concepts -- 4.3.1 System Modeling -- 4.3.2 Subsystem Modeling -- 4.3.3 Stochastic Modeling -- 4.4 What is a Link/Link‐level Simulation? -- 4.4.1 Source and Source Coding -- 4.4.2 Channel Coding -- 4.4.3 Symbol Mapping/Modulation -- 4.4.4 Upsampling -- 4.4.5 Digital Filtering -- 4.4.6 RF Front‐end -- 4.4.7 Channel -- 4.4.8 Synchronization and Equalization -- 4.4.9 Performance Evaluation and Signal Analysis -- 4.5 Communication in AWGN - A Simple Case Study -- 4.5.1 Receiver Design -- 4.6 Multi‐link vs. Network‐level Simulations -- 4.6.1 Network Layout Generation -- 4.6.1.1 Hexagonal Grid -- 4.6.1.2 PPP‐based Network Layout -- 4.7 Practical Issues -- 4.7.1 Monte Carlo Simulations -- 4.7.2 Random Number Generation -- 4.7.2.1 White Noise Generation -- 4.7.2.2 Random Binary Sequence -- 4.7.3 Values of Simulation Parameters -- 4.7.4 Confidence Interval. 4.7.5 Convergence/Stopping Criterion -- 4.8 Issues/Limitations of Simulations -- 4.8.1 Modeling Errors -- 4.8.1.1 Errors in System Model -- 4.8.1.2 Errors in Subsystem Model -- 4.8.1.3 Errors in Random Process Modeling -- 4.8.2 Processing Errors -- 4.9 Conclusions -- References -- Chapter 5 RF Impairments -- 5.1 Radio Impairment Sources -- 5.2 IQ Modulation Impairments -- 5.3 PA Nonlinearities -- 5.4 Phase Noise and Time Jitter -- 5.5 Frequency Offset -- 5.6 ADC/DAC Impairments -- 5.7 Thermal Noise -- 5.8 RF Impairments and Interference -- 5.8.1 Harmonics and Intermodulation Products -- 5.8.2 Multiple Access Interference -- 5.9 Conclusions -- References -- Chapter 6 Digital Modulation and Pulse Shaping -- 6.1 Digital Modulation Basics -- 6.2 Popularly Used Digital Modulation Schemes -- 6.2.1 PSK -- 6.2.2 FSK -- 6.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal -- 6.2.3 QAM -- 6.2.4 Differential Modulation -- 6.3 Adaptive Modulation -- 6.3.1 Gray Mapping -- 6.3.2 Calculation of Error -- 6.3.3 Relation of EbNo with SNR at the Receiver -- 6.4 Pulse‐Shaping Filtering -- 6.5 Conclusions -- References -- Chapter 7 OFDM Signal Analysis and Performance Evaluation -- 7.1 Why OFDM? -- 7.2 Generic OFDM System Design and Its Evaluation -- 7.2.1 Basic CP‐OFDM Transceiver Design -- 7.2.2 Spectrum of the OFDM Signal -- 7.2.3 PAPR of the OFDM Signal -- 7.2.4 Performance in Multipath Channel -- 7.2.4.1 Time‐Dispersive Multipath Channel -- 7.2.4.2 Frequency‐Dispersive Multipath Channel -- 7.2.5 Performance with Impairments -- 7.2.5.1 Frequency Offset -- 7.2.5.2 Symbol Timing Error -- 7.2.5.3 Sampling Clock Offset -- 7.2.5.4 Phase Noise -- 7.2.5.5 PA Nonlinearities -- 7.2.5.6 I/Q Impairments -- 7.2.6 Summary of the OFDM Design Considerations -- 7.2.7 Coherent versus Differential OFDM -- 7.3 OFDM‐like Signaling -- 7.3.1 OFDM Versus SC‐FDE. 7.3.2 Multi‐user OFDM and OFDMA -- 7.3.3 SC‐FDMA and DFT‐S‐OFDM -- 7.4 Case Study: Measurement‐Based OFDM Receiver -- 7.4.1 System Model -- 7.4.1.1 Frame Format -- 7.4.1.2 OFDM Symbol Format -- 7.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model -- 7.4.1.4 Received Signal Model -- 7.4.2 Receiver Structure and Algorithms -- 7.4.2.1 Packet Detection -- 7.4.2.2 Frequency Offset Estimation and Compensation -- 7.4.2.3 Symbol Timing Estimation -- 7.4.2.4 Packet‐end Detection and Packet Extraction -- 7.4.2.5 Channel Estimation and Equalization -- 7.4.2.6 Pilot Tracking -- 7.4.2.7 Auto‐modulation Detection -- 7.4.3 FCH Decoding -- 7.4.4 Test and Measurements -- 7.5 Conclusions -- References -- Chapter 8 Analysis of Single‐Carrier Communication Systems -- 8.1 A Simple System in AWGN Channel -- 8.2 Flat Fading (Non‐Dispersive) Multipath Channel -- 8.3 Frequency‐Selective (Dispersive) Multipath Channel -- 8.3.1 Time‐Domain Equalization -- 8.3.2 Channel Estimation -- 8.3.3 Frequency‐Domain Equalization -- 8.4 Extension of Dispersive Multipath Channel to DS‐CDMA‐based Wideband Systems -- 8.5 Conclusions -- References -- Chapter 9 Multiple Accessing, Multi‐Numerology, Hybrid Waveforms -- 9.1 Preliminaries -- 9.1.1 Duplexing -- 9.1.2 Downlink Communication -- 9.1.3 Uplink Communication -- 9.1.4 Traffic Theory and Trunking Gain -- 9.2 Orthogonal Design -- 9.2.1 TDMA -- 9.2.2 FDMA -- 9.2.3 Code Division Multiple Access (CDMA) -- 9.2.4 Frequency Hopped Multiple Access (FHMA) -- 9.2.5 Space Division Multiple Access (SDMA) -- 9.2.5.1 Multiuser Multiple‐input Multiple‐output (MIMO) -- 9.3 Non‐orthogonal Design -- 9.3.1 Power‐domain Non‐orthogonal Multiple Access (PD‐NOMA) -- 9.3.2 Code‐domain Non‐orthogonal Multiple Access -- 9.4 Random Access -- 9.4.1 ALOHA -- 9.4.2 Carrier Sense Multiple Accessing (CSMA) -- 9.4.3 Multiple Access Collision Avoidance (MACA). 9.4.4 Random Access Channel (RACH) -- 9.4.5 Grant‐free Random Access -- 9.5 Multiple Accessing with Application‐Based Hybrid Waveform Design -- 9.5.1 Multi‐numerology Orthogonal Frequency Division Multiple Access (OFDMA) -- 9.5.2 Radar‐Sensing and Communication (RSC) Coexistence -- 9.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks -- 9.6 Case Study -- Appendix: Erlang B table -- References -- Chapter 10 Wireless Channel and Interference -- 10.1 Fundamental Propagation Phenomena -- 10.2 Multipath Propagation -- 10.2.1 Large‐Scale Fading -- 10.2.1.1 Path Loss -- 10.2.1.2 Shadowing -- 10.2.2 Small‐Scale Fading -- 10.2.2.1 Characterization of Time‐Varying Channels -- 10.2.2.2 Rayleigh and Rician Fading Distributions -- 10.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel -- 10.2.3.1 Delay Spread -- 10.2.3.2 Angular Spread -- 10.2.3.3 Doppler Spread -- 10.2.4 Novel Channel Characteristics in the 5G Technology -- 10.3 Channel as a Source of Interference -- 10.3.1 Interference due to Large‐Scale Fading -- 10.3.1.1 Cellular Systems and CoChannel Interference -- 10.3.1.2 Cochannel Interference Control via Resource Assignment -- 10.3.2 Interference due to Small‐Scale Fading -- 10.4 Channel Modeling -- 10.4.1 Analytical Channel Models -- 10.4.1.1 Correlation‐based Models -- 10.4.1.2 Propagation‐Motivated Models -- 10.4.2 Physical Models -- 10.4.2.1 Deterministic Model -- 10.4.2.2 Geometry‐based Stochastic Model -- 10.4.2.3 Nongeometry‐based Stochastic Models -- 10.4.3 3GPP 5G Channel Models -- 10.4.3.1 Tapped Delay Line (TDL) Model -- 10.4.3.2 Clustered Delay Line (CDL) Model -- 10.4.3.3 Generating Channel Coefficients Using CDL Model -- 10.4.4 Role of Artificial Intelligence (AI) in Channel Modeling -- 10.5 Channel Measurement -- 10.5.1 Frequency Domain Channel Sounder. 10.5.1.1 Swept Frequency/Chirp Sounder. |
| Record Nr. | UNINA-9910554880703321 |
Arslan Hüseyin <1968->
|
||
| Hoboken, New Jersey : , : Wiley, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||
Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan
| Wireless communication signals : a laboratory-based approach / / Hüseyin Arslan |
| Autore | Arslan Hüseyin <1968-> |
| Pubbl/distr/stampa | Hoboken, New Jersey : , : Wiley, , [2021] |
| Descrizione fisica | 1 online resource (467 pages) |
| Disciplina | 621.384 |
| Soggetto topico | Wireless communication systems |
| ISBN |
1-119-76443-2
1-119-76444-0 1-119-76442-4 |
| Formato | Materiale a stampa |
| Livello bibliografico | Monografia |
| Lingua di pubblicazione | eng |
| Nota di contenuto |
Intro -- Title Page -- Copyright -- Contents -- Preface -- List of Contributors -- Acronyms List -- Chapter 1 Hands‐on Wireless Communication Experience -- 1.1 Importance of Laboratory‐Based Learning of Wireless Communications -- 1.2 Model for a Practical Lab Bench -- 1.3 Examples of Co‐simulation with Hardware -- 1.4 A Sample Model for a Laboratory Course -- 1.4.1 Introduction to the SDR and Testbed Platform -- 1.4.2 Basic Simulation -- 1.4.3 Measurements and Multidimensional Signal Analysis -- 1.4.4 Digital Modulation -- 1.4.5 Pulse Shaping -- 1.4.6 RF Front‐end and RF Impairments -- 1.4.7 Wireless Channel and Interference -- 1.4.8 Synchronization and Channel Estimation -- 1.4.9 OFDM Signal Analysis and Performance Evaluation -- 1.4.10 Multiple Accessing -- 1.4.11 Independent Project Development Phase -- 1.4.11.1 Software Defined Radio -- 1.4.11.2 Dynamic Spectrum Access and CR Experiment -- 1.4.11.3 Wireless Channel -- 1.4.11.4 Wireless Channel Counteractions -- 1.4.11.5 Antenna Project -- 1.4.11.6 Signal Intelligence -- 1.4.11.7 Channel, User, and Context Awareness Project -- 1.4.11.8 Combination of DSP Lab with RF and Microwave Lab -- 1.4.11.9 Multiple Access and Interference Management -- 1.4.11.10 Standards -- 1.5 Conclusions -- References -- Chapter 2 Performance Metrics and Measurements -- 2.1 Signal Quality Measurements -- 2.1.1 Measurements Before Demodulation -- 2.1.2 Measurements During and After Demodulation -- 2.1.2.1 Noise Figure -- 2.1.2.2 Channel Frequency Response Estimation -- 2.1.3 Measurements After Channel Decoding -- 2.1.3.1 Relation of SNR with BER -- 2.1.4 Error Vector Magnitude -- 2.1.4.1 Error‐Vector‐Time and Error‐Vector‐Frequency -- 2.1.4.2 Relation of EVM with Other Metrics -- 2.1.4.3 Rho -- 2.1.5 Measures After Speech or Video Decoding -- 2.2 Visual Inspections and Useful Plots -- 2.2.1 Advanced Scatter Plot.
2.3 Cognitive Radio and SDR Measurements -- 2.4 Other Measurements -- 2.5 Clarifying dB and dBm -- 2.6 Conclusions -- References -- Chapter 3 Multidimensional Signal Analysis -- 3.1 Why Multiple Dimensions in a Radio Signal? -- 3.2 Time Domain Analysis -- 3.2.1 CCDF and PAPR -- 3.2.2 Time Selectivity Measure -- 3.3 Frequency Domain Analysis -- 3.3.1 Adjacent Channel Power Ratio -- 3.3.2 Frequency Selectivity Measure -- 3.4 Joint Time‐Frequency Analysis -- 3.5 Code Domain Analysis -- 3.5.1 Code Selectivity -- 3.6 Correlation Analysis -- 3.7 Modulation Domain Analysis -- 3.8 Angular Domain Analysis -- 3.8.1 Direction Finding -- 3.8.2 Angular Spread -- 3.9 MIMO Measurements -- 3.9.1 Antenna Correlation -- 3.9.2 RF Cross‐Coupling -- 3.9.3 EVM Versus Antenna Branches -- 3.9.4 Channel Parameters -- 3.10 Conclusions -- References -- Chapter 4 Simulating a Communication System -- 4.1 Simulation: What, Why? -- 4.2 Approaching a Simulation -- 4.2.1 Strategy -- 4.2.2 General Methodology -- 4.3 Basic Modeling Concepts -- 4.3.1 System Modeling -- 4.3.2 Subsystem Modeling -- 4.3.3 Stochastic Modeling -- 4.4 What is a Link/Link‐level Simulation? -- 4.4.1 Source and Source Coding -- 4.4.2 Channel Coding -- 4.4.3 Symbol Mapping/Modulation -- 4.4.4 Upsampling -- 4.4.5 Digital Filtering -- 4.4.6 RF Front‐end -- 4.4.7 Channel -- 4.4.8 Synchronization and Equalization -- 4.4.9 Performance Evaluation and Signal Analysis -- 4.5 Communication in AWGN - A Simple Case Study -- 4.5.1 Receiver Design -- 4.6 Multi‐link vs. Network‐level Simulations -- 4.6.1 Network Layout Generation -- 4.6.1.1 Hexagonal Grid -- 4.6.1.2 PPP‐based Network Layout -- 4.7 Practical Issues -- 4.7.1 Monte Carlo Simulations -- 4.7.2 Random Number Generation -- 4.7.2.1 White Noise Generation -- 4.7.2.2 Random Binary Sequence -- 4.7.3 Values of Simulation Parameters -- 4.7.4 Confidence Interval. 4.7.5 Convergence/Stopping Criterion -- 4.8 Issues/Limitations of Simulations -- 4.8.1 Modeling Errors -- 4.8.1.1 Errors in System Model -- 4.8.1.2 Errors in Subsystem Model -- 4.8.1.3 Errors in Random Process Modeling -- 4.8.2 Processing Errors -- 4.9 Conclusions -- References -- Chapter 5 RF Impairments -- 5.1 Radio Impairment Sources -- 5.2 IQ Modulation Impairments -- 5.3 PA Nonlinearities -- 5.4 Phase Noise and Time Jitter -- 5.5 Frequency Offset -- 5.6 ADC/DAC Impairments -- 5.7 Thermal Noise -- 5.8 RF Impairments and Interference -- 5.8.1 Harmonics and Intermodulation Products -- 5.8.2 Multiple Access Interference -- 5.9 Conclusions -- References -- Chapter 6 Digital Modulation and Pulse Shaping -- 6.1 Digital Modulation Basics -- 6.2 Popularly Used Digital Modulation Schemes -- 6.2.1 PSK -- 6.2.2 FSK -- 6.2.2.1 GMSK and Approximate Representation of GSM GMSK Signal -- 6.2.3 QAM -- 6.2.4 Differential Modulation -- 6.3 Adaptive Modulation -- 6.3.1 Gray Mapping -- 6.3.2 Calculation of Error -- 6.3.3 Relation of EbNo with SNR at the Receiver -- 6.4 Pulse‐Shaping Filtering -- 6.5 Conclusions -- References -- Chapter 7 OFDM Signal Analysis and Performance Evaluation -- 7.1 Why OFDM? -- 7.2 Generic OFDM System Design and Its Evaluation -- 7.2.1 Basic CP‐OFDM Transceiver Design -- 7.2.2 Spectrum of the OFDM Signal -- 7.2.3 PAPR of the OFDM Signal -- 7.2.4 Performance in Multipath Channel -- 7.2.4.1 Time‐Dispersive Multipath Channel -- 7.2.4.2 Frequency‐Dispersive Multipath Channel -- 7.2.5 Performance with Impairments -- 7.2.5.1 Frequency Offset -- 7.2.5.2 Symbol Timing Error -- 7.2.5.3 Sampling Clock Offset -- 7.2.5.4 Phase Noise -- 7.2.5.5 PA Nonlinearities -- 7.2.5.6 I/Q Impairments -- 7.2.6 Summary of the OFDM Design Considerations -- 7.2.7 Coherent versus Differential OFDM -- 7.3 OFDM‐like Signaling -- 7.3.1 OFDM Versus SC‐FDE. 7.3.2 Multi‐user OFDM and OFDMA -- 7.3.3 SC‐FDMA and DFT‐S‐OFDM -- 7.4 Case Study: Measurement‐Based OFDM Receiver -- 7.4.1 System Model -- 7.4.1.1 Frame Format -- 7.4.1.2 OFDM Symbol Format -- 7.4.1.3 Baseband Transmitter Blocks and Transmitted Signal Model -- 7.4.1.4 Received Signal Model -- 7.4.2 Receiver Structure and Algorithms -- 7.4.2.1 Packet Detection -- 7.4.2.2 Frequency Offset Estimation and Compensation -- 7.4.2.3 Symbol Timing Estimation -- 7.4.2.4 Packet‐end Detection and Packet Extraction -- 7.4.2.5 Channel Estimation and Equalization -- 7.4.2.6 Pilot Tracking -- 7.4.2.7 Auto‐modulation Detection -- 7.4.3 FCH Decoding -- 7.4.4 Test and Measurements -- 7.5 Conclusions -- References -- Chapter 8 Analysis of Single‐Carrier Communication Systems -- 8.1 A Simple System in AWGN Channel -- 8.2 Flat Fading (Non‐Dispersive) Multipath Channel -- 8.3 Frequency‐Selective (Dispersive) Multipath Channel -- 8.3.1 Time‐Domain Equalization -- 8.3.2 Channel Estimation -- 8.3.3 Frequency‐Domain Equalization -- 8.4 Extension of Dispersive Multipath Channel to DS‐CDMA‐based Wideband Systems -- 8.5 Conclusions -- References -- Chapter 9 Multiple Accessing, Multi‐Numerology, Hybrid Waveforms -- 9.1 Preliminaries -- 9.1.1 Duplexing -- 9.1.2 Downlink Communication -- 9.1.3 Uplink Communication -- 9.1.4 Traffic Theory and Trunking Gain -- 9.2 Orthogonal Design -- 9.2.1 TDMA -- 9.2.2 FDMA -- 9.2.3 Code Division Multiple Access (CDMA) -- 9.2.4 Frequency Hopped Multiple Access (FHMA) -- 9.2.5 Space Division Multiple Access (SDMA) -- 9.2.5.1 Multiuser Multiple‐input Multiple‐output (MIMO) -- 9.3 Non‐orthogonal Design -- 9.3.1 Power‐domain Non‐orthogonal Multiple Access (PD‐NOMA) -- 9.3.2 Code‐domain Non‐orthogonal Multiple Access -- 9.4 Random Access -- 9.4.1 ALOHA -- 9.4.2 Carrier Sense Multiple Accessing (CSMA) -- 9.4.3 Multiple Access Collision Avoidance (MACA). 9.4.4 Random Access Channel (RACH) -- 9.4.5 Grant‐free Random Access -- 9.5 Multiple Accessing with Application‐Based Hybrid Waveform Design -- 9.5.1 Multi‐numerology Orthogonal Frequency Division Multiple Access (OFDMA) -- 9.5.2 Radar‐Sensing and Communication (RSC) Coexistence -- 9.5.3 Coexistence of Different Waveforms in Multidimensional Hyperspace for 6G and Beyond Networks -- 9.6 Case Study -- Appendix: Erlang B table -- References -- Chapter 10 Wireless Channel and Interference -- 10.1 Fundamental Propagation Phenomena -- 10.2 Multipath Propagation -- 10.2.1 Large‐Scale Fading -- 10.2.1.1 Path Loss -- 10.2.1.2 Shadowing -- 10.2.2 Small‐Scale Fading -- 10.2.2.1 Characterization of Time‐Varying Channels -- 10.2.2.2 Rayleigh and Rician Fading Distributions -- 10.2.3 Time, Frequency and Angular Domains Characteristics of Multipath Channel -- 10.2.3.1 Delay Spread -- 10.2.3.2 Angular Spread -- 10.2.3.3 Doppler Spread -- 10.2.4 Novel Channel Characteristics in the 5G Technology -- 10.3 Channel as a Source of Interference -- 10.3.1 Interference due to Large‐Scale Fading -- 10.3.1.1 Cellular Systems and CoChannel Interference -- 10.3.1.2 Cochannel Interference Control via Resource Assignment -- 10.3.2 Interference due to Small‐Scale Fading -- 10.4 Channel Modeling -- 10.4.1 Analytical Channel Models -- 10.4.1.1 Correlation‐based Models -- 10.4.1.2 Propagation‐Motivated Models -- 10.4.2 Physical Models -- 10.4.2.1 Deterministic Model -- 10.4.2.2 Geometry‐based Stochastic Model -- 10.4.2.3 Nongeometry‐based Stochastic Models -- 10.4.3 3GPP 5G Channel Models -- 10.4.3.1 Tapped Delay Line (TDL) Model -- 10.4.3.2 Clustered Delay Line (CDL) Model -- 10.4.3.3 Generating Channel Coefficients Using CDL Model -- 10.4.4 Role of Artificial Intelligence (AI) in Channel Modeling -- 10.5 Channel Measurement -- 10.5.1 Frequency Domain Channel Sounder. 10.5.1.1 Swept Frequency/Chirp Sounder. |
| Record Nr. | UNINA-9910830809503321 |
Arslan Hüseyin <1968->
|
||
| Hoboken, New Jersey : , : Wiley, , [2021] | ||
| Lo trovi qui: Univ. Federico II | ||
| ||