top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
Bio-inorganic hybrid nanomaterials : strategies, syntheses, characterization and applications / / edited by Eduardo Ruiz-Hitzky, Katsuhiko Ariga and Yuri M. Lvov
Bio-inorganic hybrid nanomaterials : strategies, syntheses, characterization and applications / / edited by Eduardo Ruiz-Hitzky, Katsuhiko Ariga and Yuri M. Lvov
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Descrizione fisica 1 online resource (523 p.)
Disciplina 620.5
Soggetto topico Nanostructured materials
Inorganic compounds
Bioinorganic chemistry
Soggetto genere / forma Electronic books.
ISBN 1-282-78429-3
9786612784293
3-527-62144-X
3-527-62145-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bio-inorganic Hybrid Nanomaterials; Contents; Preface; Contributors; 1 An Introduction to Bio-nanohybrid Materials; 1.1 Introduction: The Assembly of Biological Species to Inorganic Solids; 1.2 Bio-nanohybrids Based on Silica Particles and Siloxane Networks; 1.3 Calcium Phosphates and Carbonates in Bioinspired and Biomimetic Materials; 1.4 Clay Minerals and Organoclay Bio-nanocomposites; 1.5 Bio-Nanohybrids Based on Metal and Metal Oxide Nanoparticles; 1.6 Carbon-based Bio-nanohybrids; 1.7 Bio-nanohybrids Based on Layered Transition Metal Solids; 1.8 Trends and Perspectives; References
2 Biomimetic Nanohybrids Based on Organosiloxane Units2.1 Introduction; 2.2 Monolayer on Solid Support; 2.3 Layered Alkylsiloxane; 2.4 Organic-Inorganic Hybrid Vesicle "Cerasome"; 2.5 Mesoporous Silica Prepared by the Lizard Template Method; 2.6 Future Perspectives; References; 3 Entrapment of Biopolymers into Sol-Gel-derived Silica Nanonocomposites; 3.1 Introduction; 3.2 Sol-Gel Processes; 3.2.1 Chemistry; 3.2.1.1 Hydrolysis; 3.2.1.2 Condensation; 3.2.1.3 Sol-Gel Transition; 3.2.2 Silica Precursors; 3.2.2.1 Orthosilicic Acid; 3.2.2.2 Sodium Metasilicate; 3.2.2.3 Alkoxides
3.2.3 Two-Stage Approach to Biopolymer Entrapment3.3 Biocompatible Approaches; 3.3.1 Modified Sol-Gel Processing; 3.3.1.1 Method of Gill and Ballesteros; 3.3.1.2 Low-Molecular and Polymeric Organic Additives; 3.3.2 Organically-modified Precursors; 3.3.3 Biocompatible Precursors by Brennan et al.; 3.4 One-Stage Approach Based on a Silica Precursor with Ethylene Glycol Residues; 3.4.1 Precursor; 3.4.2 Role of Biopolymers in Sol-Gel Processing; 3.4.3 Advantages of One-Stage Processes; 3.4.4 Hybrid Biopolymer-Silica Nanocomposite Materials; 3.4.5 Enzyme Immobilization; 3.5 Perspectives
References4 Immobilization of Biomolecules on Mesoporous Structured Materials; 4.1 Introduction; 4.2 Immobilization of Protein on Mesoporous Silica; 4.3 Immobilization of Protein on Mesoporous Carbon and Related Materials; 4.4 Immobilization of Other Biopolymers on Mesoporous Materials; 4.5 Immobilization of Small Biomolecules on Mesoporous Materials; 4.6 Advanced Functions of Nanohybrids of Biomolecules and Mesoporous Materials; 4.7 Future Perspectives; References; 5 Bio-controlled Growth of Oxides and Metallic Nanoparticles; 5.1 Introduction; 5.2 Biomimetic Approaches
5.3 In vitro Synthesis of Hybrid Nanomaterials5.3.1 Polysaccharides; 5.3.1.1 Alginates; 5.3.1.2 Carrageenans; 5.3.1.3 Chitosan; 5.3.2 Proteins; 5.3.2.1 Gelatin; 5.3.2.2 Collagen; 5.3.2.3 Protein Cages and Viral Capsids; 5.3.3 Lipids; 5.3.4 DNA Scaffolds; 5.4 Perspectives: Towards a "Green Nanochemistry"; References; 6 Biomineralization of Hydrogels Based on Bioinspired Assemblies for Injectable Biomaterials; 6.1 Introduction; 6.1.1 Biominerals as Nanomaterials; 6.1.2 Nanomaterials for Biofunctions; 6.2 Fundamental Concept of Bioinspired Approach; 6.2.1 Bioinspired Approach to Materials
6.2.2 Concrete Examples of the Bioinspired Approach
Record Nr. UNINA-9910144377803321
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Bio-inorganic hybrid nanomaterials : strategies, syntheses, characterization and applications / / edited by Eduardo Ruiz-Hitzky, Katsuhiko Ariga and Yuri M. Lvov
Bio-inorganic hybrid nanomaterials : strategies, syntheses, characterization and applications / / edited by Eduardo Ruiz-Hitzky, Katsuhiko Ariga and Yuri M. Lvov
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Descrizione fisica 1 online resource (523 p.)
Disciplina 620.5
Soggetto topico Nanostructured materials
Inorganic compounds
Bioinorganic chemistry
ISBN 1-282-78429-3
9786612784293
3-527-62144-X
3-527-62145-8
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Bio-inorganic Hybrid Nanomaterials; Contents; Preface; Contributors; 1 An Introduction to Bio-nanohybrid Materials; 1.1 Introduction: The Assembly of Biological Species to Inorganic Solids; 1.2 Bio-nanohybrids Based on Silica Particles and Siloxane Networks; 1.3 Calcium Phosphates and Carbonates in Bioinspired and Biomimetic Materials; 1.4 Clay Minerals and Organoclay Bio-nanocomposites; 1.5 Bio-Nanohybrids Based on Metal and Metal Oxide Nanoparticles; 1.6 Carbon-based Bio-nanohybrids; 1.7 Bio-nanohybrids Based on Layered Transition Metal Solids; 1.8 Trends and Perspectives; References
2 Biomimetic Nanohybrids Based on Organosiloxane Units2.1 Introduction; 2.2 Monolayer on Solid Support; 2.3 Layered Alkylsiloxane; 2.4 Organic-Inorganic Hybrid Vesicle "Cerasome"; 2.5 Mesoporous Silica Prepared by the Lizard Template Method; 2.6 Future Perspectives; References; 3 Entrapment of Biopolymers into Sol-Gel-derived Silica Nanonocomposites; 3.1 Introduction; 3.2 Sol-Gel Processes; 3.2.1 Chemistry; 3.2.1.1 Hydrolysis; 3.2.1.2 Condensation; 3.2.1.3 Sol-Gel Transition; 3.2.2 Silica Precursors; 3.2.2.1 Orthosilicic Acid; 3.2.2.2 Sodium Metasilicate; 3.2.2.3 Alkoxides
3.2.3 Two-Stage Approach to Biopolymer Entrapment3.3 Biocompatible Approaches; 3.3.1 Modified Sol-Gel Processing; 3.3.1.1 Method of Gill and Ballesteros; 3.3.1.2 Low-Molecular and Polymeric Organic Additives; 3.3.2 Organically-modified Precursors; 3.3.3 Biocompatible Precursors by Brennan et al.; 3.4 One-Stage Approach Based on a Silica Precursor with Ethylene Glycol Residues; 3.4.1 Precursor; 3.4.2 Role of Biopolymers in Sol-Gel Processing; 3.4.3 Advantages of One-Stage Processes; 3.4.4 Hybrid Biopolymer-Silica Nanocomposite Materials; 3.4.5 Enzyme Immobilization; 3.5 Perspectives
References4 Immobilization of Biomolecules on Mesoporous Structured Materials; 4.1 Introduction; 4.2 Immobilization of Protein on Mesoporous Silica; 4.3 Immobilization of Protein on Mesoporous Carbon and Related Materials; 4.4 Immobilization of Other Biopolymers on Mesoporous Materials; 4.5 Immobilization of Small Biomolecules on Mesoporous Materials; 4.6 Advanced Functions of Nanohybrids of Biomolecules and Mesoporous Materials; 4.7 Future Perspectives; References; 5 Bio-controlled Growth of Oxides and Metallic Nanoparticles; 5.1 Introduction; 5.2 Biomimetic Approaches
5.3 In vitro Synthesis of Hybrid Nanomaterials5.3.1 Polysaccharides; 5.3.1.1 Alginates; 5.3.1.2 Carrageenans; 5.3.1.3 Chitosan; 5.3.2 Proteins; 5.3.2.1 Gelatin; 5.3.2.2 Collagen; 5.3.2.3 Protein Cages and Viral Capsids; 5.3.3 Lipids; 5.3.4 DNA Scaffolds; 5.4 Perspectives: Towards a "Green Nanochemistry"; References; 6 Biomineralization of Hydrogels Based on Bioinspired Assemblies for Injectable Biomaterials; 6.1 Introduction; 6.1.1 Biominerals as Nanomaterials; 6.1.2 Nanomaterials for Biofunctions; 6.2 Fundamental Concept of Bioinspired Approach; 6.2.1 Bioinspired Approach to Materials
6.2.2 Concrete Examples of the Bioinspired Approach
Record Nr. UNINA-9910830055903321
Weinheim, Germany : , : Wiley-VCH Verlag GmbH & Co. KGaA, , 2008
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular architectonics and nanoarchitectonics / / Thimmaiah Govindaraju, Katsuhiko Ariga, editors
Molecular architectonics and nanoarchitectonics / / Thimmaiah Govindaraju, Katsuhiko Ariga, editors
Pubbl/distr/stampa Cham, Switzerland : , : Springer, , [2022]
Descrizione fisica 1 online resource (545 pages)
Disciplina 620.5
Collana Nanostructure science and technology
Soggetto topico Nanotechnology
ISBN 981-16-4189-7
981-16-4188-9
Classificazione UWA
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction: Molecular Architectonics to Nanoarchitectonics -- Contents -- Part I: Molecular Architectonics and Nanoarchitectonics -- Chapter 1: Molecular Architectonics -- 1.1 Introduction -- 1.2 Self-Cleaning Materials -- 1.3 Biomimetic Catalysis -- 1.4 Organic Electronics -- 1.5 Chirality, Homochirality, and Protein Folding -- 1.6 Biosensors -- 1.7 Drug Delivery and Tissue Engineering -- 1.8 Conclusion and Future Prospects -- References -- Chapter 2: Nanoarchitectonics -- 2.1 History of Nanoarchitectonics -- 2.2 Essence of Nanoarchitectonics -- 2.3 Example of Nanoarchitectonics -- 2.4 Short Perspective -- References -- Part II: Architectonics of Functional Molecules -- Chapter 3: Topological Supramolecular Polymer -- 3.1 Sixty Years of History of Catenanes -- 3.2 Supramolecular Polymer with Intrinsic Curvature -- 3.3 Nanolympiadane -- 3.4 Mechanism of Nano-Catenane Formation -- 3.5 Nano-Polycatenanes -- 3.6 Conclusion -- References -- Chapter 4: Molecular Architectonics Guide to the Fabrication of Self-Cleaning Materials -- 4.1 Introduction -- 4.2 Self-Cleaning Surfaces and Relevant Parameters -- 4.3 Theories of Superhydrophobic Property-Based Self-Cleaning Phenomena (Lotus Leaf Vs Rose Petal) -- 4.4 Molecular Architectonics-Guided Self-Cleaning Materials -- 4.5 Fabrication Superhydrophobic Self-Cleaning Surfaces by Molecular Architectonics -- 4.6 Conclusions and Outlook -- References -- Chapter 5: Functional Discotic Liquid Crystals Through Molecular Self-Assembly: Toward Efficient Charge Transport Systems -- 5.1 Introduction -- 5.2 Charge Transport in DLCs -- 5.2.1 Charge Transport Studies in DLC Materials Based on Various Discotic Cores -- 5.2.1.1 Phthalocyanine -- 5.2.1.2 Porphyrin -- 5.2.1.3 Triphenylene -- 5.2.1.4 Coronene Family -- 5.2.1.5 Perylene -- 5.2.1.6 Pyrene -- 5.2.1.7 Truxene Family -- 5.2.1.8 Thiophene.
5.2.1.9 Triphenylborane -- 5.3 Summary and Future Perspective -- References -- Part III: Architectonics of Peptides -- Chapter 6: Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications -- 6.1 Introduction -- 6.2 Polydopamine-Based Materials -- 6.2.1 Polydopamine Nanoparticles -- 6.2.2 Core/Shell Nanoparticles -- 6.2.3 Microcapsules -- 6.2.4 Films -- 6.2.5 Hydrogels -- 6.3 Dopamine-Based Materials Prepared via the Co-assembly Strategy -- 6.3.1 Polydopamine-Assisted Co-deposition -- 6.3.2 Novel Dopamine-Based Nanostructures -- 6.4 Applications of Dopamine-Based Materials -- 6.4.1 Cancer Theranostics -- 6.4.2 Bioimaging -- 6.4.3 Self-Adhesive Bioelectronics -- 6.4.4 Removal of Heavy Metal Ions -- 6.5 Summary and Outlook -- References -- Chapter 7: Peptide-Based Nanoarchitectonics: Self-Assembly and Biological Applications -- 7.1 Introduction -- 7.2 Self-Assembly Mechanisms -- 7.3 Tumor Imaging and Phototherapeutic Biomaterials -- 7.4 Biomimetic Photosynthetic Architectures -- 7.5 Conclusions and Perspective -- References -- Chapter 8: Peptide Cross-β Nanoarchitectures: Characterizing Self-Assembly Mechanisms, Structure, and Physicochemical Properti... -- 8.1 Introduction -- 8.2 Mechanisms of Cross-β Self-Assembly -- 8.2.1 General Mechanistic Considerations -- 8.2.2 Fluorescent Reporters of Cross-β Assembly, Including ThT -- 8.2.3 Turbidity -- 8.2.4 Infrared Spectroscopy -- 8.2.5 Circular Dichroism (CD) Spectroscopy -- 8.2.6 Dynamic Light Scattering (DLS) -- 8.2.7 Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and High-Speed AFM (HS-AFM) -- 8.2.8 Sedimentation Analysis -- 8.2.9 Electrospray Ionization-Ion Mobility-Mass Spectrometry (ESI-IMS-MS) -- 8.2.10 Quartz Crystal Microbalance (QCM) Analysis -- 8.2.11 Surface Plasmon Resonance (SPR).
8.2.12 Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC) -- 8.2.13 In Silico Simulations -- 8.3 Structural Characterization of Cross-β Nanomaterials -- 8.3.1 Introduction -- 8.3.2 Circular Dichroism -- 8.3.3 Vibrational Spectroscopy -- 8.3.3.1 Infrared (IR) Spectroscopy -- 8.3.3.2 Raman Spectroscopy -- 8.4 Solid-State NMR (SSNMR) -- 8.5 Diffraction Techniques -- 8.6 Electron Microscopy -- 8.7 Emergent Physicochemical Properties of Cross-β Nanomaterials -- 8.8 Conclusion -- References -- Chapter 9: Function-Inspired Design of Molecular Hydrogels: Paradigm-Shifting Biomaterials for Biomedical Applications -- 9.1 Introduction -- 9.2 Molecular Hydrogels from Self-Assembling Peptides (SAPs) -- 9.2.1 Self-Healing SAPs for Cardiovascular Disease -- 9.2.2 SAP-Based Molecular Hydrogels in Accelerated Wound Healing -- 9.2.3 Hydrogels to Regulate Immune Response Toward the Implant -- 9.3 Prodrug-Based Self-Assembled Hydrogels -- 9.4 Stimuli-Guided Self-Assembly and Disassembly (Disease-Responsive Disassembly) of Small Molecules -- 9.4.1 Enzyme-Responsive Hydrogels for Delivery of Immunosuppressants in Vascularized Composite Allotransplantation (VCA) and A... -- 9.4.2 Ascorbyl Palmitate (AP or AP-16) Hydrogel Fibers for Charge-Dependent Localization, Adherence, and Enzyme-Responsive Dru... -- 9.4.3 Stimuli-Responsive Molecular Hydrogels for Cancer Immunotherapy -- 9.5 In Situ Forming Gels -- 9.5.1 Other Applications: LMWHs for Gene Therapy and Delivery of NSAIDs -- 9.6 Tissue-Engineering Scaffolds for Regenerative Medicine -- 9.7 Future Perspectives -- 9.8 Conclusions -- References -- Chapter 10: Smart Peptide Assembly Architectures to Mimic Biology´s Adaptive Properties and Applications -- 10.1 Introduction -- 10.2 Different Nanoarchitectonics -- 10.2.1 Micelles -- 10.2.2 Vesicles -- 10.2.3 Fibers -- 10.2.4 Tubes.
10.2.5 Tapes and Ribbons -- 10.2.6 Nanospheres -- 10.3 Self-Assembly Amino Acids to Nanoarchitectonics -- 10.4 Peptide Self-Assembly to Nanoarchitectonics -- 10.4.1 Supramolecular Helices -- 10.4.2 Single-Stranded Supramolecular Helix -- 10.4.3 Double-Stranded Supramolecular Helix -- 10.4.4 Triple-Stranded Supramolecular Helix -- 10.4.5 Quadruple-Stranded Supramolecular Helix -- 10.4.6 Herringbone Helix -- 10.4.6.1 Supramolecular β-Sheets -- 10.4.6.2 β-Sheet from Cyclic Peptide Foldamers -- 10.4.6.3 β-Sheet from Acyclic Peptide Foldamers -- 10.4.7 Factors on Self-Assembly of Folded Peptides -- 10.4.8 Effect of Amino Acid Sequence -- 10.4.9 Effect of Concentration -- 10.4.10 Effect of Sonication -- 10.4.11 Effect of Spacer -- 10.5 Effect of pH -- 10.6 Effect of Solvent -- 10.7 Effect of Other Stimulus -- 10.8 Conclusion -- References -- Part IV: Architectonics of Nucleic Acids -- Chapter 11: Bio-inspired Functional DNA Architectures -- 11.1 Introduction -- 11.2 Modification Strategies -- 11.3 DNA Duplexes with External Modifications -- 11.4 DNA Duplexes with Internal Modifications -- 11.5 Higher-Order DNA Architectures -- 11.6 Conclusions and Outlook -- References -- Chapter 12: Functional Molecule-Templated DNA Molecular Architectonics -- 12.1 Introduction -- 12.1.1 SFM Toolbox -- 12.1.2 Templated DNA Architectures -- 12.1.2.1 SFM-Templated DNA Architectonics Driven by Canonical Hydrogen Bonding Interactions -- 12.1.2.2 SFM-Templated DNA Architectonics Driven by Noncanonical Hydrogen Bonding Interactions -- 12.1.2.3 SFM-Templated DNA Architectonics Driven by Ionic Interactions -- 12.1.2.4 SFM-Templated DNA Architectonics Driven by Metal-Base Pair Interactions -- 12.2 Nanoparticle-Templated DNA Architectonics -- 12.3 Biomolecule-Templated DNA Architectonics -- 12.3.1 Threading Intercalator-Guided DNA Architectonics.
12.4 Conclusions and Future Perspectives -- References -- Chapter 13: Architectures of Nucleolipid Assemblies and Their Applications -- 13.1 Introduction -- 13.2 Architectonic Landscape of Nucleolipids -- 13.2.1 Design and Tuning of Nucleolipid Assemblies -- 13.2.2 Non-ionic Nucleolipids -- 13.2.3 Ionic Nucleolipids -- 13.2.4 Glycosyl-Based Nucleolipids -- 13.3 Applications of Nucleolipid Assemblies -- 13.3.1 Nucleolipid Delivery Vehicles, Injectable Gels and Tissue Engineering Scaffolds -- 13.3.2 Fluorescent Nucleolipids and Sensors -- 13.3.3 Nucleolipid Assemblies for Environmental Remediation -- 13.4 Conclusions and Outlook -- References -- Chapter 14: Nucleobase- and DNA-Functionalized Hydrogels and Their Applications -- 14.1 Introduction -- 14.2 G-Quadruplex Hydrogel -- 14.2.1 Brief History of G-Quadruplex Hydrogel -- 14.2.2 G-Quadruplex Hydrogels from Binary Systems -- 14.2.3 Boronate Ester Functionalized Dynamic G-Quadruplex Hydrogels and Their Applications -- 14.3 Oligonucleotide-Based Hydrogel -- 14.3.1 Conjugated Oligonucleotides -- 14.3.2 Peptide-Oligonucleotide Conjugates (POCs) -- 14.3.3 Lipid-Oligonucleotide Conjugates -- 14.3.4 Carbohydrate-Oligonucleotide Conjugates -- 14.4 Conclusion -- References -- Chapter 15: RNA Nanoarchitectures and Their Applications -- 15.1 Introduction -- 15.2 RNA vs DNA: Structural Differences and Its Implications on Stability -- 15.2.1 Key Structural Differences Between RNA and DNA -- 15.2.2 Structural Implications on RNA Stability -- 15.3 Aspects of RNA Nanoarchitecture -- 15.3.1 RNA Nanotechnology in Comparison with DNA Nanotechnology -- 15.3.2 Building Blocks of RNA Nanoarchitecture: RNA Motifs -- 15.3.3 Strategies for Building RNA Nanoarchitecture -- 15.4 Applications of RNA Nanoarchitecture -- 15.4.1 RNA Nanoarchitectures in Drug Delivery -- 15.4.2 In Vivo Assembly of RNA Nanoarchitecture.
15.4.3 RNA Nanoarchitecture in Detection and Imaging: Light-Up Aptamers.
Record Nr. UNINA-9910743248703321
Cham, Switzerland : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Organized organic ultrathin films [[electronic resource] ] : fundamentals and applications / / edited by Katsuhiko Ariga
Organized organic ultrathin films [[electronic resource] ] : fundamentals and applications / / edited by Katsuhiko Ariga
Pubbl/distr/stampa Weinheim, : Wiley, 2013
Descrizione fisica 1 online resource (228 p.)
Disciplina 621.38152
Altri autori (Persone) ArigaKatsuhiko <1962->
Soggetto topico Organic thin films
Nanostructured materials
Self-assembly (Chemistry)
Soggetto genere / forma Electronic books.
ISBN 3-527-65466-6
1-299-47598-1
3-527-65469-0
3-527-65468-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Copyright page; Contents; Preface; List of Contributors; 1: Introduction; 2: Self-Assembled Monolayer (SAM); 2.1 Introduction; 2.2 Preparation and Characterization; 2.2.1 Organothiols on Au; 2.2.2 Organosilanes on SiOx Surfaces; 2.2.3 SAMs on Si Surface via Si-C Bonding; 2.3 Functions and Applications; 2.3.1 Surface Coating and Patterning; 2.3.2 Sensor Applications; 2.3.3 Nanotribology; 2.3.4 Advanced Applications; 2.4 Future Perspective; 3: Langmuir-Blodgett (LB) Film; 3.1 Concept and Mechanism; 3.2 Preparation and Characterization; 3.2.1 Gibbs Monolayers
3.2.2 Langmuir Monolayers3.2.3 In situ Characterization of Monolayers at the Subphase Surface; 3.2.4 Transfer to Solid Supports; 3.3 Functions and Applications; 3.3.1 Molecular Recognition; 3.3.2 Multilayer Films for Photoelectronic Functions; 3.3.3 Biomimetic Functions; 3.3.4 Advanced Applications; 4: Layer-by-Layer (LbL) Assembly; 4.1 Concept and Mechanism; 4.2 Preparation and Characterization; 4.2.1 Applicable Materials and Interactions; 4.2.2 Thin-Film Preparation: Fundamental Procedure and Characterization; 4.2.3 Various Driving Forces and Techniques; 4.2.4 Three-Dimensional Assemblies
4.3 Functions and Applications4.3.1 Physicochemical Applications of LbL Thin Films; 4.3.2 Biomedical Applications of LbL Thin Films; 4.4 Brief Summary and Perspectives; 5: Other Thin Films; 5.1 Bilayer Vesicle and Cast Film; 5.1.1 Definition of a Bilayer Structure, a Bilayer Membrane, and a Bilayer Vesicle; 5.1.2 Formation of a Bilayer Structure; 5.1.3 Cast Films Containing a Bilayer Structure; 5.2 Self-Assembled Fibers, Tubes, and Ribbons; 5.2.1 Introduction; 5.2.2 Finding a Helical Superstructure; 5.2.3 Organogel; 5.2.4 Control of Aggregate Morphology; 5.3 Polymer Brush Layer
5.3.1 Definition of Polymer Brushes5.3.2 Preparation of Polymer Brushes; 5.3.3 Properties and Applications of Concentrated Polymer Brushes; 5.4 Organic-Inorganic Hybrids; 5.5 Colloidal Layers; 5.6 Newly Appearing Techniques; 5.6.1 Material-Binding Peptide; 5.6.2 Block-Copolymer Films; 5.6.3 Nanoimprint Lithography; Index
Record Nr. UNINA-9910141393303321
Weinheim, : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Organized organic ultrathin films [[electronic resource] ] : fundamentals and applications / / edited by Katsuhiko Ariga
Organized organic ultrathin films [[electronic resource] ] : fundamentals and applications / / edited by Katsuhiko Ariga
Pubbl/distr/stampa Weinheim, : Wiley, 2013
Descrizione fisica 1 online resource (228 p.)
Disciplina 621.38152
Altri autori (Persone) ArigaKatsuhiko <1962->
Soggetto topico Organic thin films
Nanostructured materials
Self-assembly (Chemistry)
ISBN 3-527-65466-6
1-299-47598-1
3-527-65469-0
3-527-65468-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Copyright page; Contents; Preface; List of Contributors; 1: Introduction; 2: Self-Assembled Monolayer (SAM); 2.1 Introduction; 2.2 Preparation and Characterization; 2.2.1 Organothiols on Au; 2.2.2 Organosilanes on SiOx Surfaces; 2.2.3 SAMs on Si Surface via Si-C Bonding; 2.3 Functions and Applications; 2.3.1 Surface Coating and Patterning; 2.3.2 Sensor Applications; 2.3.3 Nanotribology; 2.3.4 Advanced Applications; 2.4 Future Perspective; 3: Langmuir-Blodgett (LB) Film; 3.1 Concept and Mechanism; 3.2 Preparation and Characterization; 3.2.1 Gibbs Monolayers
3.2.2 Langmuir Monolayers3.2.3 In situ Characterization of Monolayers at the Subphase Surface; 3.2.4 Transfer to Solid Supports; 3.3 Functions and Applications; 3.3.1 Molecular Recognition; 3.3.2 Multilayer Films for Photoelectronic Functions; 3.3.3 Biomimetic Functions; 3.3.4 Advanced Applications; 4: Layer-by-Layer (LbL) Assembly; 4.1 Concept and Mechanism; 4.2 Preparation and Characterization; 4.2.1 Applicable Materials and Interactions; 4.2.2 Thin-Film Preparation: Fundamental Procedure and Characterization; 4.2.3 Various Driving Forces and Techniques; 4.2.4 Three-Dimensional Assemblies
4.3 Functions and Applications4.3.1 Physicochemical Applications of LbL Thin Films; 4.3.2 Biomedical Applications of LbL Thin Films; 4.4 Brief Summary and Perspectives; 5: Other Thin Films; 5.1 Bilayer Vesicle and Cast Film; 5.1.1 Definition of a Bilayer Structure, a Bilayer Membrane, and a Bilayer Vesicle; 5.1.2 Formation of a Bilayer Structure; 5.1.3 Cast Films Containing a Bilayer Structure; 5.2 Self-Assembled Fibers, Tubes, and Ribbons; 5.2.1 Introduction; 5.2.2 Finding a Helical Superstructure; 5.2.3 Organogel; 5.2.4 Control of Aggregate Morphology; 5.3 Polymer Brush Layer
5.3.1 Definition of Polymer Brushes5.3.2 Preparation of Polymer Brushes; 5.3.3 Properties and Applications of Concentrated Polymer Brushes; 5.4 Organic-Inorganic Hybrids; 5.5 Colloidal Layers; 5.6 Newly Appearing Techniques; 5.6.1 Material-Binding Peptide; 5.6.2 Block-Copolymer Films; 5.6.3 Nanoimprint Lithography; Index
Record Nr. UNINA-9910831164103321
Weinheim, : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Organized organic ultrathin films : fundamentals and applications / / edited by Katsuhiko Ariga
Organized organic ultrathin films : fundamentals and applications / / edited by Katsuhiko Ariga
Pubbl/distr/stampa Weinheim, : Wiley, 2013
Descrizione fisica 1 online resource (228 p.)
Disciplina 621.38152
Altri autori (Persone) ArigaKatsuhiko <1962->
Soggetto topico Organic thin films
Nanostructured materials
Self-assembly (Chemistry)
ISBN 3-527-65466-6
1-299-47598-1
3-527-65469-0
3-527-65468-2
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Title page; Copyright page; Contents; Preface; List of Contributors; 1: Introduction; 2: Self-Assembled Monolayer (SAM); 2.1 Introduction; 2.2 Preparation and Characterization; 2.2.1 Organothiols on Au; 2.2.2 Organosilanes on SiOx Surfaces; 2.2.3 SAMs on Si Surface via Si-C Bonding; 2.3 Functions and Applications; 2.3.1 Surface Coating and Patterning; 2.3.2 Sensor Applications; 2.3.3 Nanotribology; 2.3.4 Advanced Applications; 2.4 Future Perspective; 3: Langmuir-Blodgett (LB) Film; 3.1 Concept and Mechanism; 3.2 Preparation and Characterization; 3.2.1 Gibbs Monolayers
3.2.2 Langmuir Monolayers3.2.3 In situ Characterization of Monolayers at the Subphase Surface; 3.2.4 Transfer to Solid Supports; 3.3 Functions and Applications; 3.3.1 Molecular Recognition; 3.3.2 Multilayer Films for Photoelectronic Functions; 3.3.3 Biomimetic Functions; 3.3.4 Advanced Applications; 4: Layer-by-Layer (LbL) Assembly; 4.1 Concept and Mechanism; 4.2 Preparation and Characterization; 4.2.1 Applicable Materials and Interactions; 4.2.2 Thin-Film Preparation: Fundamental Procedure and Characterization; 4.2.3 Various Driving Forces and Techniques; 4.2.4 Three-Dimensional Assemblies
4.3 Functions and Applications4.3.1 Physicochemical Applications of LbL Thin Films; 4.3.2 Biomedical Applications of LbL Thin Films; 4.4 Brief Summary and Perspectives; 5: Other Thin Films; 5.1 Bilayer Vesicle and Cast Film; 5.1.1 Definition of a Bilayer Structure, a Bilayer Membrane, and a Bilayer Vesicle; 5.1.2 Formation of a Bilayer Structure; 5.1.3 Cast Films Containing a Bilayer Structure; 5.2 Self-Assembled Fibers, Tubes, and Ribbons; 5.2.1 Introduction; 5.2.2 Finding a Helical Superstructure; 5.2.3 Organogel; 5.2.4 Control of Aggregate Morphology; 5.3 Polymer Brush Layer
5.3.1 Definition of Polymer Brushes5.3.2 Preparation of Polymer Brushes; 5.3.3 Properties and Applications of Concentrated Polymer Brushes; 5.4 Organic-Inorganic Hybrids; 5.5 Colloidal Layers; 5.6 Newly Appearing Techniques; 5.6.1 Material-Binding Peptide; 5.6.2 Block-Copolymer Films; 5.6.3 Nanoimprint Lithography; Index
Record Nr. UNINA-9910877728403321
Weinheim, : Wiley, 2013
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
System-materials nanoarchitectonics / / edited by Yutaka Wakayama and Katsuhiko Ariga
System-materials nanoarchitectonics / / edited by Yutaka Wakayama and Katsuhiko Ariga
Edizione [1st edition.]
Pubbl/distr/stampa Tokyo, Japan : , : Springer, , [2022]
Descrizione fisica 1 online resource (332 pages) : (VIII, 338 p. 170 illus., 158 illus. in color)
Disciplina 620.5
Collana NIMS Monographs
Soggetto topico Optical materials
Nanostructured materials
ISBN 4-431-56912-X
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto What is Nanoarchitectonics? --Synthesis of Semiconductor Nanowires --Nanoparticle Biomarkers Adapted for Near-Infrared Fluorescence Imaging --Frontiers in Mesoscale Materials Design --Wavelengh-selective Photothermal Infrared Sensors --Functional Molecular Liquids --Ionic nanoarchitectonics: Creation of polymer-based atomic switch and decision-making device --Oxoporphyrinogens: Novel Dyes based on the Fusion of Calix[4]pyrrole, Quinonoids and Porphyrins --Growth and electronic and optoelectronic applications of surface oxides on atomically thin WSe2 --Portable toxic gas sensors based on functionalized carbon nanotubes --Advanced Nanomechanical Sensor for Artificial Olfactory System: Membrane-type Surface Stress Sensor (MSS) --Quantum Molecular Devices toward Large-Scale Integration --Nanostructured bulk thermoelectric materials for energy harvesting --Artificial Photosynthesis: Fundamentals, Challenges, and Strategies --Smart Polymers for Biomedical Applications --Geometrical and mechanical nanoarchitectonics at interfaces bridging molecules with cell phenotypes --Electrical measurement by Multiple-Probe Scanning Probe Microscope --Large-Scale First-principles Calculation Technique for Nanoarchitectonics: Local orbital and Linear-scaling DFT methods with the CONQUEST code --Machine Learning Approaches in Nanoarchitectonics.
Record Nr. UNINA-9910523898203321
Tokyo, Japan : , : Springer, , [2022]
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui