top

  Info

  • Utilizzare la checkbox di selezione a fianco di ciascun documento per attivare le funzionalità di stampa, invio email, download nei formati disponibili del (i) record.

  Info

  • Utilizzare questo link per rimuovere la selezione effettuata.
From Molecules to Materials [[electronic resource] ] : Pathways to Artificial Photosynthesis / / edited by Elena A. Rozhkova, Katsuhiko Ariga
From Molecules to Materials [[electronic resource] ] : Pathways to Artificial Photosynthesis / / edited by Elena A. Rozhkova, Katsuhiko Ariga
Edizione [1st ed. 2015.]
Pubbl/distr/stampa Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Descrizione fisica 1 online resource (324 p.)
Disciplina 541.37
620.11
621.042
Soggetto topico Renewable energy resources
Biomaterials
Electrochemistry
Renewable and Green Energy
ISBN 3-319-13800-6
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Preface -- Semiconductors for Photocatalytic and Photoelectrochemical Solar Water Splitting -- Artificial Photosynthesis Producing Solar Fuels: Natural Tactics of Photosynthesis -- The evolution of artificial-photosynthesis from molecular to organic/inorganic hybrid nano-systems -- Enzymes as exploratory catalysts in Artificial Photosynthesis -- Solar photoelectrochemical water splitting with bio-conjugate and bio-hybrid electrodes -- Hybrid (enzymatic and photocatalytic) systems for CO2-water co-processing to afford energy rich molecules -- Current challenges of CO2 photocatalytic reduction over semiconductors using sunlight -- Functionalized Nano-carbons for Artificial Photosynthesis; from Fullerenes to SWCNTs and graphene -- Plasmonic Photocatalysts with Wide Light Absorption Spectra and High Charge Separation Efficiency -- Soft X-ray Spectroscopy and Electronic Structure of 3d Transition Metal Compounds in Artificial Photosynthesis Materials -- Assessment of the electronic structure of photo-electrodes with X-ray and electron spectroscopy.
Record Nr. UNINA-9910299613403321
Cham : , : Springer International Publishing : , : Imprint : Springer, , 2015
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials nanoarchitectonics / / edited by Katsuhiko Ariga and Mitsuhiro Ebara
Materials nanoarchitectonics / / edited by Katsuhiko Ariga and Mitsuhiro Ebara
Autore Ariga Katsuhiko
Edizione [1st edition]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2018
Descrizione fisica 1 online resource (337 pages) : illustrations (some color)
Disciplina 620.5
Soggetto topico Nanostructured materials
Soggetto genere / forma Electronic books.
ISBN 3-527-80830-2
3-527-80828-0
3-527-80831-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910270907403321
Ariga Katsuhiko  
Weinheim, Germany : , : Wiley-VCH, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Materials nanoarchitectonics / / edited by Katsuhiko Ariga and Mitsuhiro Ebara
Materials nanoarchitectonics / / edited by Katsuhiko Ariga and Mitsuhiro Ebara
Autore Ariga Katsuhiko
Edizione [1st edition]
Pubbl/distr/stampa Weinheim, Germany : , : Wiley-VCH, , 2018
Descrizione fisica 1 online resource (337 pages) : illustrations (some color)
Disciplina 620.5
Soggetto topico Nanostructured materials
ISBN 3-527-80830-2
3-527-80828-0
3-527-80831-0
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Record Nr. UNINA-9910830771503321
Ariga Katsuhiko  
Weinheim, Germany : , : Wiley-VCH, , 2018
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui
Molecular Architectonics and Nanoarchitectonics
Molecular Architectonics and Nanoarchitectonics
Autore Govindaraju Thimmaiah
Pubbl/distr/stampa Singapore : , : Springer Singapore Pte. Limited, , 2021
Descrizione fisica 1 online resource (545 pages)
Altri autori (Persone) ArigaKatsuhiko
Collana Nanostructure Science and Technology Ser.
Soggetto genere / forma Electronic books.
ISBN 981-16-4189-7
Formato Materiale a stampa
Livello bibliografico Monografia
Lingua di pubblicazione eng
Nota di contenuto Intro -- Preface -- Introduction: Molecular Architectonics to Nanoarchitectonics -- Contents -- Part I: Molecular Architectonics and Nanoarchitectonics -- Chapter 1: Molecular Architectonics -- 1.1 Introduction -- 1.2 Self-Cleaning Materials -- 1.3 Biomimetic Catalysis -- 1.4 Organic Electronics -- 1.5 Chirality, Homochirality, and Protein Folding -- 1.6 Biosensors -- 1.7 Drug Delivery and Tissue Engineering -- 1.8 Conclusion and Future Prospects -- References -- Chapter 2: Nanoarchitectonics -- 2.1 History of Nanoarchitectonics -- 2.2 Essence of Nanoarchitectonics -- 2.3 Example of Nanoarchitectonics -- 2.4 Short Perspective -- References -- Part II: Architectonics of Functional Molecules -- Chapter 3: Topological Supramolecular Polymer -- 3.1 Sixty Years of History of Catenanes -- 3.2 Supramolecular Polymer with Intrinsic Curvature -- 3.3 Nanolympiadane -- 3.4 Mechanism of Nano-Catenane Formation -- 3.5 Nano-Polycatenanes -- 3.6 Conclusion -- References -- Chapter 4: Molecular Architectonics Guide to the Fabrication of Self-Cleaning Materials -- 4.1 Introduction -- 4.2 Self-Cleaning Surfaces and Relevant Parameters -- 4.3 Theories of Superhydrophobic Property-Based Self-Cleaning Phenomena (Lotus Leaf Vs Rose Petal) -- 4.4 Molecular Architectonics-Guided Self-Cleaning Materials -- 4.5 Fabrication Superhydrophobic Self-Cleaning Surfaces by Molecular Architectonics -- 4.6 Conclusions and Outlook -- References -- Chapter 5: Functional Discotic Liquid Crystals Through Molecular Self-Assembly: Toward Efficient Charge Transport Systems -- 5.1 Introduction -- 5.2 Charge Transport in DLCs -- 5.2.1 Charge Transport Studies in DLC Materials Based on Various Discotic Cores -- 5.2.1.1 Phthalocyanine -- 5.2.1.2 Porphyrin -- 5.2.1.3 Triphenylene -- 5.2.1.4 Coronene Family -- 5.2.1.5 Perylene -- 5.2.1.6 Pyrene -- 5.2.1.7 Truxene Family -- 5.2.1.8 Thiophene.
5.2.1.9 Triphenylborane -- 5.3 Summary and Future Perspective -- References -- Part III: Architectonics of Peptides -- Chapter 6: Dopamine-Based Materials: Recent Advances in Synthesis Methods and Applications -- 6.1 Introduction -- 6.2 Polydopamine-Based Materials -- 6.2.1 Polydopamine Nanoparticles -- 6.2.2 Core/Shell Nanoparticles -- 6.2.3 Microcapsules -- 6.2.4 Films -- 6.2.5 Hydrogels -- 6.3 Dopamine-Based Materials Prepared via the Co-assembly Strategy -- 6.3.1 Polydopamine-Assisted Co-deposition -- 6.3.2 Novel Dopamine-Based Nanostructures -- 6.4 Applications of Dopamine-Based Materials -- 6.4.1 Cancer Theranostics -- 6.4.2 Bioimaging -- 6.4.3 Self-Adhesive Bioelectronics -- 6.4.4 Removal of Heavy Metal Ions -- 6.5 Summary and Outlook -- References -- Chapter 7: Peptide-Based Nanoarchitectonics: Self-Assembly and Biological Applications -- 7.1 Introduction -- 7.2 Self-Assembly Mechanisms -- 7.3 Tumor Imaging and Phototherapeutic Biomaterials -- 7.4 Biomimetic Photosynthetic Architectures -- 7.5 Conclusions and Perspective -- References -- Chapter 8: Peptide Cross-β Nanoarchitectures: Characterizing Self-Assembly Mechanisms, Structure, and Physicochemical Properti... -- 8.1 Introduction -- 8.2 Mechanisms of Cross-β Self-Assembly -- 8.2.1 General Mechanistic Considerations -- 8.2.2 Fluorescent Reporters of Cross-β Assembly, Including ThT -- 8.2.3 Turbidity -- 8.2.4 Infrared Spectroscopy -- 8.2.5 Circular Dichroism (CD) Spectroscopy -- 8.2.6 Dynamic Light Scattering (DLS) -- 8.2.7 Transmission Electron Microscopy (TEM), Atomic Force Microscopy (AFM), and High-Speed AFM (HS-AFM) -- 8.2.8 Sedimentation Analysis -- 8.2.9 Electrospray Ionization-Ion Mobility-Mass Spectrometry (ESI-IMS-MS) -- 8.2.10 Quartz Crystal Microbalance (QCM) Analysis -- 8.2.11 Surface Plasmon Resonance (SPR).
8.2.12 Isothermal Titration Calorimetry (ITC) and Differential Scanning Calorimetry (DSC) -- 8.2.13 In Silico Simulations -- 8.3 Structural Characterization of Cross-β Nanomaterials -- 8.3.1 Introduction -- 8.3.2 Circular Dichroism -- 8.3.3 Vibrational Spectroscopy -- 8.3.3.1 Infrared (IR) Spectroscopy -- 8.3.3.2 Raman Spectroscopy -- 8.4 Solid-State NMR (SSNMR) -- 8.5 Diffraction Techniques -- 8.6 Electron Microscopy -- 8.7 Emergent Physicochemical Properties of Cross-β Nanomaterials -- 8.8 Conclusion -- References -- Chapter 9: Function-Inspired Design of Molecular Hydrogels: Paradigm-Shifting Biomaterials for Biomedical Applications -- 9.1 Introduction -- 9.2 Molecular Hydrogels from Self-Assembling Peptides (SAPs) -- 9.2.1 Self-Healing SAPs for Cardiovascular Disease -- 9.2.2 SAP-Based Molecular Hydrogels in Accelerated Wound Healing -- 9.2.3 Hydrogels to Regulate Immune Response Toward the Implant -- 9.3 Prodrug-Based Self-Assembled Hydrogels -- 9.4 Stimuli-Guided Self-Assembly and Disassembly (Disease-Responsive Disassembly) of Small Molecules -- 9.4.1 Enzyme-Responsive Hydrogels for Delivery of Immunosuppressants in Vascularized Composite Allotransplantation (VCA) and A... -- 9.4.2 Ascorbyl Palmitate (AP or AP-16) Hydrogel Fibers for Charge-Dependent Localization, Adherence, and Enzyme-Responsive Dru... -- 9.4.3 Stimuli-Responsive Molecular Hydrogels for Cancer Immunotherapy -- 9.5 In Situ Forming Gels -- 9.5.1 Other Applications: LMWHs for Gene Therapy and Delivery of NSAIDs -- 9.6 Tissue-Engineering Scaffolds for Regenerative Medicine -- 9.7 Future Perspectives -- 9.8 Conclusions -- References -- Chapter 10: Smart Peptide Assembly Architectures to Mimic Biology´s Adaptive Properties and Applications -- 10.1 Introduction -- 10.2 Different Nanoarchitectonics -- 10.2.1 Micelles -- 10.2.2 Vesicles -- 10.2.3 Fibers -- 10.2.4 Tubes.
10.2.5 Tapes and Ribbons -- 10.2.6 Nanospheres -- 10.3 Self-Assembly Amino Acids to Nanoarchitectonics -- 10.4 Peptide Self-Assembly to Nanoarchitectonics -- 10.4.1 Supramolecular Helices -- 10.4.2 Single-Stranded Supramolecular Helix -- 10.4.3 Double-Stranded Supramolecular Helix -- 10.4.4 Triple-Stranded Supramolecular Helix -- 10.4.5 Quadruple-Stranded Supramolecular Helix -- 10.4.6 Herringbone Helix -- 10.4.6.1 Supramolecular β-Sheets -- 10.4.6.2 β-Sheet from Cyclic Peptide Foldamers -- 10.4.6.3 β-Sheet from Acyclic Peptide Foldamers -- 10.4.7 Factors on Self-Assembly of Folded Peptides -- 10.4.8 Effect of Amino Acid Sequence -- 10.4.9 Effect of Concentration -- 10.4.10 Effect of Sonication -- 10.4.11 Effect of Spacer -- 10.5 Effect of pH -- 10.6 Effect of Solvent -- 10.7 Effect of Other Stimulus -- 10.8 Conclusion -- References -- Part IV: Architectonics of Nucleic Acids -- Chapter 11: Bio-inspired Functional DNA Architectures -- 11.1 Introduction -- 11.2 Modification Strategies -- 11.3 DNA Duplexes with External Modifications -- 11.4 DNA Duplexes with Internal Modifications -- 11.5 Higher-Order DNA Architectures -- 11.6 Conclusions and Outlook -- References -- Chapter 12: Functional Molecule-Templated DNA Molecular Architectonics -- 12.1 Introduction -- 12.1.1 SFM Toolbox -- 12.1.2 Templated DNA Architectures -- 12.1.2.1 SFM-Templated DNA Architectonics Driven by Canonical Hydrogen Bonding Interactions -- 12.1.2.2 SFM-Templated DNA Architectonics Driven by Noncanonical Hydrogen Bonding Interactions -- 12.1.2.3 SFM-Templated DNA Architectonics Driven by Ionic Interactions -- 12.1.2.4 SFM-Templated DNA Architectonics Driven by Metal-Base Pair Interactions -- 12.2 Nanoparticle-Templated DNA Architectonics -- 12.3 Biomolecule-Templated DNA Architectonics -- 12.3.1 Threading Intercalator-Guided DNA Architectonics.
12.4 Conclusions and Future Perspectives -- References -- Chapter 13: Architectures of Nucleolipid Assemblies and Their Applications -- 13.1 Introduction -- 13.2 Architectonic Landscape of Nucleolipids -- 13.2.1 Design and Tuning of Nucleolipid Assemblies -- 13.2.2 Non-ionic Nucleolipids -- 13.2.3 Ionic Nucleolipids -- 13.2.4 Glycosyl-Based Nucleolipids -- 13.3 Applications of Nucleolipid Assemblies -- 13.3.1 Nucleolipid Delivery Vehicles, Injectable Gels and Tissue Engineering Scaffolds -- 13.3.2 Fluorescent Nucleolipids and Sensors -- 13.3.3 Nucleolipid Assemblies for Environmental Remediation -- 13.4 Conclusions and Outlook -- References -- Chapter 14: Nucleobase- and DNA-Functionalized Hydrogels and Their Applications -- 14.1 Introduction -- 14.2 G-Quadruplex Hydrogel -- 14.2.1 Brief History of G-Quadruplex Hydrogel -- 14.2.2 G-Quadruplex Hydrogels from Binary Systems -- 14.2.3 Boronate Ester Functionalized Dynamic G-Quadruplex Hydrogels and Their Applications -- 14.3 Oligonucleotide-Based Hydrogel -- 14.3.1 Conjugated Oligonucleotides -- 14.3.2 Peptide-Oligonucleotide Conjugates (POCs) -- 14.3.3 Lipid-Oligonucleotide Conjugates -- 14.3.4 Carbohydrate-Oligonucleotide Conjugates -- 14.4 Conclusion -- References -- Chapter 15: RNA Nanoarchitectures and Their Applications -- 15.1 Introduction -- 15.2 RNA vs DNA: Structural Differences and Its Implications on Stability -- 15.2.1 Key Structural Differences Between RNA and DNA -- 15.2.2 Structural Implications on RNA Stability -- 15.3 Aspects of RNA Nanoarchitecture -- 15.3.1 RNA Nanotechnology in Comparison with DNA Nanotechnology -- 15.3.2 Building Blocks of RNA Nanoarchitecture: RNA Motifs -- 15.3.3 Strategies for Building RNA Nanoarchitecture -- 15.4 Applications of RNA Nanoarchitecture -- 15.4.1 RNA Nanoarchitectures in Drug Delivery -- 15.4.2 In Vivo Assembly of RNA Nanoarchitecture.
15.4.3 RNA Nanoarchitecture in Detection and Imaging: Light-Up Aptamers.
Record Nr. UNINA-9910508444603321
Govindaraju Thimmaiah  
Singapore : , : Springer Singapore Pte. Limited, , 2021
Materiale a stampa
Lo trovi qui: Univ. Federico II
Opac: Controlla la disponibilità qui